Electrostatic force noise and free-fall for LISA

Bill Weber Università di Trento

Ludovico Carbone, Antonella Cavalleri, Giacomo Ciani, Rita Dolesi, Mauro Hueller, Daniele Nicolodi, David Tombolato, Stefano Vitale, Peter Wass

Charging issues in experimental gravity MIT, July 26-27, 2007 G070571-00-R

Noise source: stray low frequency electrostatics

$$\begin{array}{c|c}
 & \delta V_1 \\
 & \bullet V_M \\
 & \bullet V_M \\
 & \bullet V_2 \\$$

$$k = -\frac{\partial F}{\partial x} = -\frac{1}{2} \sum_{i} \frac{\partial^2 C_i}{\partial x^2} (V_i - V_{TM})^2 \qquad \begin{cases} \propto Q^2 \\ \propto \langle \delta V \rangle \end{cases}$$

Electrostatic stiffness

$$F = \frac{Q}{C_{TOT}} \sum \frac{\partial C_i}{\partial x} \, \delta V_i \qquad \begin{cases} S_F^{1/2} = \frac{\sqrt{2e^2 \lambda_{EFF}}}{\omega C_T} \left| \frac{\partial C}{\partial x} \right| \Delta_x \\ S_F^{1/2} = \frac{\langle Q \rangle}{C_T} \left| \frac{\partial C}{\partial x} \right| S_{\Delta_x}^{1/2} \end{cases}$$

Random charge noise mixing with DC bias (Δ_x)

Noisy average "DC" bias ($S_{\Delta x}$) mixing with mean charge

$$S_F^{1/2} = \sqrt{\sum \left|\frac{\partial C_i}{\partial x}\right|^2} \,\delta V_i^2 S_{\delta V_i}$$

Noisy "DC" biases interacting with themselves

Measurements of electrostatic force noise with LISA GRS

GRS capacitive sensor for LTP / LISA

- 4 mm x-sensing gaps
- Mo / Au-coated Shapal

Hollow TM suspended as torsion pendulum

 \rightarrow Rotational measurements of differential electrostatic forces

Electrostatic stiffness from stray electrostatic fields

- Stiffness from 100 kHz sensor bias roughly as modeled (30% below infinite plate prediction)
- Sensor OFF stiffness negligible → stiffness from patch charges not important for LISA!!
 → measurement confirmed recently in translation (4-mass pendulum)

→ Benefit of 4 mm gaps, $\Gamma \sim d^{-3}$

• RMS patch voltage differences on ~ 4 mm domains no more than 50 mV

Electrostatic stiffness from TM charging

- As expected from electrostatic model (roughly 30% below infinite plate model)
- Note: minimum magnitude obtained for V_{TM} ~ 60 mV (NOT 0 V)
 → DC biases effect charge measurement and stiffness

Noise source: DC biases and charge shot noise

• $\lambda_{eff} \sim 800$ e/s (H. Araujo, LISA Symposium 2004) includes +/-, different charge number

Charge feels integrated effect from all patch fields

- Can be measured by applying a coherent TM bias (simulated charge)
- Can be cancelled by application of correct compensation voltage

DC Bias: measurement and compensation

- DC biases compensated with $V_{COMP} = +15 \text{ mV}$ (intrinsic $\Delta_{\phi} = -60 \text{ mV}$)
- Sub-mV measurement possible in 15 minutes integration
- Compensation possible to DAC resolution, in flight
- Random charging should not be problematic under normal conditions

Noise source: in-band voltage noise mixing with DC bias

$$F \approx -\frac{C}{d} \delta V v_{\rm n}$$

Voltage noise: v_n

- Actuation amplifier noise (electronics)
- Thermal voltage fluctuations (δ)
- Drifting (not Brownian) DC bias $S_{\delta V}^{1/2}$

DC voltage difference: δV

- Test mass charge
- Residual unbalanced patch effects

LISA goal $v_n \approx 20 \ \mu V/Hz^{1/2}$ at 0.1 mHz

Stability in measured stray "DC" biases

- Rotational DC bias imbalance Δ_{ϕ} measured over several days
- "DC" biases drift away from (compensated) null over time
- Need to consider noise in "DC" biases

- No excess voltage fluctuation noise observed above 0.1 mHz
- 1 σ -limit of measurement: 200 μ V/ Hz^{1/2} white noise near 0.2 mHz
- fit to $1/f^{3/2}$ excess at lower frequencies

• fitting low frequency excess noise to $1/f^2$

Noise budget for charge – stray voltage interaction

NB: "worst case" for stray voltage fluctuations is measurement limited (true noise likely falls off with increasing frequency)

[UV discharging tests in collaboration with Imperial College]

- Use two UV lamps, one to charge (+12000 e/s) and one to discharge (-12000 e/s)
- (open loop) charge constant within several mV over 20 hour measurements
- Last measurement in absence of UV light demonstrates charge measurement resolution

- create large TM charge fluctuations (20x LISA value) with net current zero by double UV illumination $\lambda_{EFF} > 20000 \text{ e/s}$
- no net increase in torque noise observed (resolution of roughly 5x LTP goal at 1 mHz)

Experimental verification of random charge force noise model

• Observe low frequency excess in torque noise, in quantitative agreement with random charge model and measured charge fluctuations:

$$N \approx -V_{M} \left[\sum \frac{\partial C_{i}}{\partial \phi} V_{i} \right] \approx -\frac{Q_{TM}}{C_{TOT}} \left| \frac{\partial C_{x}}{\partial \phi} \right| \Delta_{\phi}$$

Effect of "self-interacting" fluctuating inhomogeneous DC biases

Average DC bias imbalance

- Couples to TM charge
- Balancing δV eliminates charge coupling
- Remove charge, immune to fluctuations in δV

$$S_{F}^{1/2} = \sqrt{\sum_{i} \left(\frac{\partial C_{i}}{\partial x}\right)^{2}} \delta V_{i}^{2} S_{\delta V_{i}}$$
$$\left\langle S_{F}^{1/2} \right\rangle \approx \sqrt{\frac{N}{4}} S_{\Delta_{x}}^{1/2} \sqrt{\left\langle \Delta_{x}^{2} \right\rangle} \left| \frac{\partial C_{x}}{\partial x} \right|$$
$$[N = \# \text{ domains / electrode}]$$

True electrostatic potential distribution

- Balancing average δV eliminates coupling to TM charge
- individual domain voltages cannot be compensated
- force noise source independent of TM charge

- Not much data, model dependent!
- Could be worse than $Q_{TM} * S_{\Delta x}^{1/2}$ ($Q_{TM} = 10^7 e$) by a factor of several

Low frequency electrostatic force noise: conclusions

Experimental data suggest:

- Integrated average DC bias imbalances (Δ_x) of order 100 mV
- Stiffness not likely to be an issue (4 mm gaps!)
- Compensation of (Δ_x) to < mV level \rightarrow random charging problem curable
- Low frequency drift / fluctuations
 - Need to correct periodically (or continuously) DC bias compensation
 - For $f > 0.1 \text{ mHz} \rightarrow$ no excess noise in $S_{\Delta X}$ observed at 200 $\mu V/Hz^{1/2}$ level (still above LISA goal)
 - lower frequency excess observed, not yet understood

→threatens LISA acceleration goals (in worst case) only at lowest frequencies

- continuous measurement / discharge help reduce noise
 - \rightarrow Appears possible without introducing force noise

• Interaction between local DC biases and their own fluctuations needs to be understood better

Extra slides

Purity of free-fall critical to LISA science

Example: massive black hole (MBH) mergers Integrated SNR at 1 week intervals for year before merger

Acceleration noise at and below 0.1 mHz determines how well, how far, and how early we will see the most massive black hole mergers.

Dielectric Loss Angle Measurement Results

Electrodes 2W/1E	Averaged sine data		Linear fitted cosine data		
	δ (/10-6)	χ^2	τ (ms)	δ (/10-6)	χ ²
3 V (p ≈ 5.e-8 mBar)	.79 ± .07	1.8	.33 ± .02	1.06 ± .16	.86
2 V (p ≈ 5.e-8 mBar)	1.08 ± .09	1.36	.23 ± .05	1.48 ± .31	1.27
3 V (p ≈ 4.e-5 mBar)	.73 ± .14	2.25	.36 ± .03	.60 ± .27	1.27

Electrostatic noise source: thermal voltage noise from dissipation

Characterize surface + circuit dissipation with a capacitive loss angle δ :

$$v_{\rm n} = \sqrt{4k_B T \frac{\delta}{\omega C}}$$

Thermal voltage noise mixing with DC voltages to produce force noise

Equivalent

Thermal force noise generated by electrostatic dissipation (imaginary spring constant)

$$S_a^{1/2}(f) \sim .3 \times 10^{-15} \text{ fm/s}^2 / \sqrt{\text{Hz}} \left(\frac{\delta}{10^{-5}}\right)^{1/2} \left(\frac{10^{-4} \text{ Hz}}{f}\right)^{1/2} \left(\frac{Q_M}{10^7 \text{ e}}\right)^{1/2}$$

LISA requires
$$\delta < 10^{-5}$$

New technique to measure δ

Measurement of dielectric losses: new direct measurement technique

Application of perfect square wave yields constant force Any lossy element creates delays and thus force transients

In-flight continuous measurement and compensation of Q, Δ_x

Continuous charge measurement

- Sufficient to see charge fluctuations below 0.1 mHz
- Allow "closed loop" continuous charge control to maintain $Q_{TM} < 10^{-6} e$
- No disturbance on interferometry axis

Continuous measurement of Δ_x

- Sufficient to measure and compensate low frequency charge fluctuations
- Maintain low Δ_x , reduce low frequency $S_{\Delta x}$
- Demands a force signal on critical interferometry axis

DC Bias measurement and compensation (in lab and in flight)

- Applied oscillating TM bias simulates TM "charge"
- Excites torque and force proportional to integrated rotational and translational DC bias imbalances V_{MODZ}

 $N = -V_M \left[\sum \frac{\partial C_i}{\partial \phi} V_i \right] \equiv -V_M \left| \frac{\partial C_x}{\partial \phi} \right| \Delta_{\phi}$

$$F = -V_M \left[\sum \frac{\partial C_i}{\partial x} V_i \right] \equiv -V_M \left| \frac{\partial C_x}{\partial x} \right| \Delta_x$$

 $\Delta_{\!\varphi}$ and $\Delta_{\!x}$:

- "averaged" rotational and translational DC bias imbalances
- couple directly to TM charge to produce a torque (force)
- With torsion pendulum, measure and compensate Δ_{ϕ}
- Δ_{ϕ} statistically similar to translational imbalance Δ_{x}

NB: for spatially uniform DC biases: $\Delta_x = \delta V_{1B} + \delta V_{2B} - \delta V_{1B} - \delta V_{2B}$ $\Delta_{\phi} = -\delta V_{1B} + \delta V_{2B} - \delta V_{1A} + \delta V_{2A}$

Different applied modulated E-fields → Distinguishing DC bias contributions

Modulated ΔV between TM and whole sensor

 \rightarrow sensitive to sum of all DC biases, (as with TM charge)

$$N = -V_M \left[\sum \frac{\partial C_i}{\partial \phi} V_i \right] \equiv -V_M \left| \frac{\partial C_x}{\partial \phi} \right| \Delta_{\phi}$$

Modulated ΔV only between TM and x-electrodes \rightarrow sensitive only to x-electrode DC biases

$$N = -V_M \left[\sum_{i(x \text{ el})} \frac{\partial C_i}{\partial \phi} V_i \right] \equiv -V_M \left| \frac{\partial C_x}{\partial \phi} \right| \Delta_{\phi(x \text{ el})}$$

- Can distinguish and compensate DC bias contributions from different electrodes
- As DC biases arise in electrodes and guard ring surfaces, cannot simultaneously compensate both overall DC bias (Δ_{ϕ} or Δ_{x}) and individual electrode DC biases (δV_{i})
- True intrinsic DC bias values are important

- Excess noise in Δ_{ϕ} observed below 50 μ Hz
- Measurement limit (roughly 600 μ V/Hz^{1/2}) factor 30 50 above LISA goal

DC Bias measurement fluctuation correlations with TM motion

DC Bias measurement fluctuation correlations with TM motion

Stability of x-electrode DC biases

Noise in x-electrode DC biases

Measurement of $\Delta_{\phi(x)}$ using V_{COMP} = + 20 mV

Experimental verification of random charge force noise model [UV discharging tests in collaboration with Imperial College]

Torque noise excess with:

• large TM charge fluctuations produce by UV illumination

 $\lambda_{\rm EFF} > 20000 \ {\rm e/s}$

large applied rotational DC bias

 $\Delta_{\phi} = 12 \text{ V}$

• Observe low frequency excess in torque noise, in quantitative agreement with random charge model and measured charge fluctuations:

$$N \approx -V_{M} \left[\sum \frac{\partial C_{i}}{\partial \phi} V_{i} \right] \approx -\frac{Q_{TM}}{C_{TOT}} \left| \frac{\partial C_{x}}{\partial \phi} \right| \Delta_{\phi}$$

- create large TM charge fluctuations (20x LISA value) with net current zero by double UV illumination $\lambda_{EFF} > 20000 \text{ e/s}$
- no net increase in torque noise observed (resolution of roughly 5x LTP goal at 1 mHz)

- Use two UV lamps, one to charge (+12000 e/s) and one to discharge (-12000 e/s)
- (open loop) maintain charge constant within several mV (within 10 mV of 0) over 20 hour measurements
- Last measurement in absence of UV light demonstrates charge measurement resolution

- measurement resolution (seen above 10^{-4} Hz in absence of UV) 10^5 e/Hz^{1/2}
- with UV light, measured charge noise roughly 3 x the minimum shot noise level, consistent with UV power fluctuations

Sensor force noise upper limits from torsion pendulum noise data

- Factor of 50 above LISA goal at 1 mHz
- Factor of 300 above LISA goal at 0.1 mHz

Charge measurement resolution: 1 mass config, η

m

 $S^{1/2}$

- Charge measurement noise as a function of measurement frequency
- Assumes 1 Volt measurement voltage
- Assuming stray torque noise with differential force noise similar to overall force noise budget $(140 \text{ frad/s}^2/\text{Hz}^{1/2})$

(not critical for charge measurement above 0.2 mHz)

Charge measurement resolution: 1 mass config, η

- Charge measurement noise as a function of measurement frequency for **1 hour measurement time**
- Stiffness discharge threshold of 10⁷ charges (60 mV, 2% change in likely x-stiffness)
- Assumes 1 Volt measurement voltage

Charge measurement resolution: 1 mass config, η

- charge measurement noise (continuous measurement) as a function of modulation frequency
- assume low-pass filtered torque signal, useful data only up to $.5 f_{MOD}$
- can subtract noise related to TM charging and interaction with DC bias at low frequencies