

Opening a new window to the universe: Present astrophysical results and the predicted reach of Advanced LIGO detectors

Yoichi Aso for the LIGO Scientific Collaboration Columbia University, Experimental Gravity Group Oct. 17th 2007 @ Columbia Particle Seminar

LIGO-G070655-00-Z

Gravitational Waves

- Ripples of spacetime
- Propagate at the speed of light
- Generated by non-spherical motion of heavy masses

A NEW WINDOW ON THE UNIVERSE

Electro-Magnetic Wave Observations

New wavelength --> Discoveries Gravitational Waves: Totally New (not even EMW)

EM	GW
Motion of charged	Coherent motion of
particles	huge masses
Wavelength < source	Wavelength > source
size (imageable)	size (no image)
Absorbed, scattered,	Almost no absorp-
by matter	tion, scattering
10MHz and up	10kHz and down

Interferometric detection of gravitational waves

Global network of detectors (interferometers)

Operating detectors: Yellow, Planned detectors: Blue

(Laser Interferometer Gravitationalwave Observatory)

LIGO

Hanford, Washington 4km and 2km interferometer in the same vacuum system

Livingston, Louisiana 4km interferometer

Noise History

Fifth Science Run

- Nov. 4th 2005 Oct. 1 2007
- Accumulated more than 1 year of triple coincidence data

 $1.4M_{\odot} - 1.4M_{\odot}$ Neutron Star Binary SNR=8

Some recent results from LIGO

Pulsar Search

*I*_{zz}:Principal moment of inertia

Rapidly rotating neutron stars

Non-axisymmetry — Continuous gravitational wave

 ϵ :Equatorial ellipticity $h_0 = \frac{16 \pi^2 G}{c^4} \frac{\epsilon I_{zz} v^2}{r}$

a good SNR

Coherent integration for long time

Size of distortion can reveal information about NS Equation of State

Beating the Spin Down Upper Limit for the Crab Pulsar

Spin down UL: Assume energy dissipation is solely due to GW emission.

$$h_0^{\text{spin down}} = \left| \frac{5}{2} \frac{G I_{zz} \dot{v}}{c^3 r^2 v} \right|^{\frac{1}{2}}$$

Current upper limit from LIGO S5 data (up to Aug. 23 2006)

 $\epsilon < 2.6 \times 10^{-4}$, $h_0 < 5.0 \times 10^{-25}$

Beat the spin down limit $h_0 < 1.4 \times 10^{-24}$ by a factor of 2.9 The ellipticity: in the range of most speculative EQOS (Owen, 2005)

Stochastic Background GW

- •Superposition of a large number of unresolved sources
- Cosmological sources
 - Vacuum fluctuations during inflation
 - Pre-big bang models
 - Phase transitions
 - Cosmic strings
- Astrophysical foregrounds
 - Binary neutron stars
 - Supernovae
 - Low-mas X-ray binaries

Search: Correlation between independent detectors

S3, S4 results B. Abbott et al., Astrophys. J. 659:918-930, 2007

10

S3 (H1-L1) S4(H1+H2-L1) Combined UL for Ω_{α}

Comparison with other experiments and theoretical models

S5 data shall beat the big bang nucleosynthesis bound.

Cosmic string model excluded parameter space

pre-big bang excluded parameter space

SGR1806-20 Hyper Flare

Soft Gamma-ray Repeater 1806-20: Hyper Flare on December 24 2004

Quasi Periodic Oscillation(QPO) observed in X-ray tail
Possible connection with excitations of neutron star's mechanical oscillation modes

LIGO status at the moment: Post-S3, pre-S4 Only Hanford 4km was in operation

Search method:

Look for excess power at the event time in the QPO frequency range (several frequencies, time intervals)

No significant deviation from the background noise found. The best upper limit: $4.5 \times 10^{-22} 1/\sqrt{\text{Hz}}$ (92.5Hz QPO observed from 150-260sec after the start of the flare) Corresponding GW energy: (assuming isotropic emission) $7.7 \times 10^{46} \text{ erg} = 4.3 \times 10^{-8} M_{\odot} c^{2}$

Comparable to the electromagnetically radiated energy

The best GW upper limit on this type of source. First multiple-frequency asteroseismology using a GW detector

Details published in B. Abbott et al., Phys. Rev. D 76, 062003 (2007)

GRB070201

A short hard gamma-ray burst (Feb. 1st 2007) Detected by Konus-Wind, INTEGRAL, Swift, MESSENGER

Short GRB progenitors: possibly NS/NS or NS/BH mergers

Emits strong gravitational waves

Other possibility: SGR (may emit GW but weaker)

The error box for the source location overlaps with the spiral arms of M31

E_{iso} ~ 10⁴⁵ ergs if at M31 distance (more similar to SGR energy than GRB energy)

What can we do with this event ?

- In the case of a detection:
 - Confirmation of a progenitor (e.g. coalescing binary system)
 - GW observation could determine the distance to the GRB

No-detection:

- Exclude progenitor in mass-distance region
- With EM measured distance to hypothetical GRB, could exclude binary progenitor of various masses
- Possible statements on progenitor models
- Bound the GW energy emitted by a source at M31

GRB070201

Search for compact binary inspiral signals

Waveform: analytically given by Post Newtonian approximation

- Matched filtering: Good SNR signal extraction
- Mass parameters unknown: search in the parameter space

 $1 M_{\odot} < m_1 < 3.0 M_{\odot}$ $1.0 M_{\odot} < m_2 40.0 M_{\odot}$

No plausible gravitational waves identified

The progenitor of GRB070201: Unlikely to be a compact binary in M31

Burst signal search

- Wide bandwidth correlation based burst signal search (40 – 2000Hz)
- Sensitivity: $h_{RSS}^{90\%} \sim 10^{-21} 1 / \sqrt{Hz}$ around 150Hz
- Corresponding energy: $E_{\rm ISO} \sim 10^{-4} 10^{-3} M_{\odot} c^2 (\sim 10^{50} 10^{51} {\rm ergs})$ assuming the distance of M31 within a ~100ms period
- Does not exclude SGR at the M31 distance

For more quantitative discussion: refer to a paper to be appear soon in ApJ

Chirp signal

Coincidence Analysis with IceCube

Burst GW search: Overwhelming number of noise events

IceCube: a neutrino detector at the south pole

Search for astrophysical events emitting GW and high-energy neutrino bursts simultaneously.

Coincident analysis between independent detectors Reject most background events

Two-stage coincidence

 Event time coincidence (within a certain time window)

 Spatial coincidence (evaluated by an unbinned maximum likelihood method)

Monte Carlo simulations

Simulated LIGO S5 and IceCube 9-string events

False Alarm Rate [events/year] =

$$= \frac{1}{435} \left(\frac{p}{1\%} \right) \left(\frac{T_{\rm w}}{1\,\rm sec} \right)$$

Time Window

: p-value

Better than the SNEWS standard

We can relax the event trigger threshold — better sensitivity

Note: Above are not real data analysis results. This is a proposal of a method.

Advanced LIGO

- Major upgrade of LIGO interferometers
- A factor of 10 improvement in strain sensitivity x1000 in detectable volume
- I day of AdvLIGO observation = 1 year of current LIGO observation
- Detect gravitational waves regularly
- Installation : planed to start in 2011, Observation: start in 2014

Before Advanced LIGO

Enhanced LIGO: a factor of 2 improvement from the current LIGO
Installation and commissioning has just started (2 years)
S6: 1 year of triple coincidence data with improved sensitivities

Time-line

Technical Challenges for Advanced LIGO detector

Sensitivity estimate of Advanced LIGO

Evolution of Interferometer Scheme

Evolution of Interferometer Scheme

Evolution of Interferometer Scheme

Resonant Sideband Extraction

Higher finesse arm cavities Retain bandwidth Reduce the light power at BS Smaller thermal lensing

Control System

Ly

lsx

PD

Lx

5 degrees of freedom to control with extremely high precision

L+=(Lx+Ly)/2L-=(Lx-Ly)/2l+=(lx+ly)/2l-=(lx-ly)/2ls=(lsx+lsy)/2

Complicated MIMO system

Laser

Signal Extraction schemes

- RF phase/amplitude modulation
- Demodulation at various ports/harmonics/quadratures
 Homodyne detection for GW channel

Seismic Isolation

Required for: Seismic noise reduction, Stable operation Combination of active and passive isolation stages.

Active system requirement x3000 attenuation @ 10Hz

Internal Active Isolation Platform

Passive Vibration Isolation Chain

Quadruple pendulum:

- » ~10⁷ attenuation @10 Hz
- Controls applied to upper layers; noise filtered from test masses

• Seismic isolation and suspension together:

 $\,\gg\,$ 10⁻¹⁹ m/rtHz at 10 Hz

Magnets Electrostatic

 Fused silica fiber
 Welded to 'ears', hydroxy-catalysis bonded to optic

Suspension Point Interferometer

- Active vibration isolation using auxiliary interferometers
- Additional vibration isolation for improving the stability of interferometers
- Considered as an option for Advanced LIGO

Prototype experiment @ University of Tokyo

Thermal Noise

Thermal vibration of the molecules of mirror / suspension material

Fluctuation Dissipation Theorem

Mechanical loss - Connection to the heat bath - Thermal fluctuation

High mechanical quality mirror substrate / coating materials

Low mechanical loss suspension fibers Fused silica fibers with silica bonding

Other challenges for mirrors

Large mirror (40kg):

large beam size (average out thermal fluctuations)Small radiation pressure noise

Precision manufacturing/metrology:

Large radius of curvature
Smooth polishing (<0.1nm RMS micro roughness)

Optical Absorption:

Optical loss < 0.5 ppm/cm
Thermal lensing compensation system

Fused silica mirror

High Power Laser

Shot Noise: Photon number fluctuation Larger laser power — Less significant

Requirements

- High power 180W
- Intensity stability: $\sim 2 \times 10^{-9}$
- Frequency stability: $\sim 10^{-7} \text{Hz}/\sqrt{\text{Hz}}$
- Good mode shape (TEM00 Gaussian beam)

Advanced LIGO Laser System

Beating the Standard Quantum Limit

Heisenberg's uncertainty principle $\Delta x \Delta p \ge \hbar/2$

Measurement uncertainty = Shot Noise Measurement back action = Radiation Pressure

Free mass SQL
$$h_{SQL} = \frac{1}{L\omega} \sqrt{\frac{8\hbar}{m}}$$

Quantum Non-Demolition Measurement

Squeezed light: non-classical state of light

X-

One quadrature is less fluctuating than the other

- Squeezed vacuum injection
- Ponderomotive squeezing

X+

Astrophysical Reach of Advanced LIGO

Many other astrophysical sources reachable

Conclusion

- Initial LIGO has reached its design sensitivity
- S5 accomplished : more than 1 year of data collected
- Several astrophysically interesting results are coming out
 - Crab pulsar upper limit
 - Stochastic background
 - SGR1806-20
 - GRB070201
 - and many others to come

Advanced LIGO

Factor of 10 improvement in strain sensitivities

Factor of 1000 increase in the detectable volume

Many advanced technologies have developed and R&Ds are going on for Advanced LIGO
 Installation will start in 2011, Observation expected to start in 2014

Advanced LIGO is expected to start an era of gravitational wave astronomy

Acknowledgments

• Members of the LIGO Laboratory, members of the LIGO Science Collaboration, National Science Foundation