



# Advanced Virgo BASELINE DESIGN

Giovanni Losurdo – INFN Firenze

**Advanced Virgo Coordinator** 

for the Virgo Collaboration



# **ADVANCED VIRGO (AdV)**

#### **GOALS:**

- Sensitivity: about 10x better than Virgo
- Timeline: be back online with AdvLIGO



#### **MAIN CHANGES:**

- higher power
- signal recycling
- heavier mirrors
- better coatings
- beam geometry



# ONGOING AdV R&D - SUMMARY (I)





# ONGOING AdV R&D - SUMMARY (II)





- AdV conceptual design completed
  - Internal review in progress
  - Due to STAC (advisory panel) and EGO Council (funding agencies) this week
- Waiting for the funding agencies approval:
  - New organization being setup. From Working Groups to WBS.
  - Next two years to prepare the *AdV* technical design.







## **LASER**

#### **BASELINE:**

#### **200 W SOLID STATE LASER AMPLIFIER** (LZH)

Nice Group is already collaborating with LZH for the Virgo+ amplifier.

#### **ALTERNATIVE OPTION:**

FIBER LASER AMPLIFIER: promising research line

- stabilization to be done
- non linear effects and polarisation maintaining to be investigated with high power





## **INPUT OPTICS**

#### **BASELINE:**

**144 m SUSPENDED RESONANT IMC**: Virgo-like solution. Problem of small angle diffused light to be addressed.





## **INPUT OPTICS**



- A dedicated facility being setup at EGO to test the input optics for Virgo+/AdV with high power. 200 W Yb laser available
- Tests on Faraday with passive thermal compensation (DKDP) and EOM (RTP) to start in fall 2008



# **OPTICAL CONFIGURATION**

#### **BASELINE:**

**DUAL RECYCLED INTERFEROMETER –** Optical parameters to be defined.

The base for the SR tower is there!





## **BEAM - DETECTION**







## **MIRRORS**

#### **BASELINE:**

- □ 35 cm Ø, 20 cm thick, 42 Kg FP mirrors
- □ Larger BS (55 cm Ø TBC)
- STATE OF THE ART COATING (R&D in progress)

#### **ALTERNATIVE OPTION:**

35 cm Ø, 30 cm thick, 63 Kg FP mirrors

Useful if fiber geometry is optimized





# **MIRRORS**

#### **POLISHING**

- Flatness, one of the main limitations in Virgo (with cleanliness!)
- Need for better polishing and more precise geometry (r.o.c.)
- Corrective coating

#### **METROLOGY**

- Characterization benches available at LMA
- Modification needed to handle larger mirrors (BS)
- Better metrology → better corrective coating

#### **CLEANLINESS**

- Keep losses in the sub-ppm range
- Proper protection of mirrors surface during installation
- Maintain cleanliness at the site requires the installation of a laminar flux in the towers





## **SUPERATTENUATOR**

#### **BASELINE:**

- VIRGO DESIGN with STIFFER IP LEGS
- TILTMETER AND IP 6 DOF CONTROL
- MECHANICS: NEW MARIONETTE REFERENCE MASS
- MIRROR ACTUATION: COIL-MAGNET PAIRS

#### **ALTERNATIVE OPTION:**

**ELECTROSTATIC ACTUATORS**: noise specs to be

demonstrated





## **SUPERATTENUATOR**





# **SUSPENSIONS**

#### **BASELINE:**

#### **FUSED SILICA CYLINDRICAL FIBERS**

## ALTERNATIVE GEOMETRIES: FUSED SILICA RIBBONS DUMBBELL FIBERS

Virgo+ activity: dummy mirror suspended with silica fibers







# **AdV BASELINE - SUMMARY**





# **SENSITIVITY CURVE - preliminary**

#### **DESIGN PARAMETERS:**

SR mirror transmittance: 0.04

Input mirror transm: 0.007

- Finesse: 885

PR factor: 23.5

Power on BS: 2.9 kW

BNS range: 121 Mpc

BBH range: 856 Mpc

1 kHz sens.:  $6 \cdot 10^{-24} / \text{VHz}$ 





# AdV sensitivity vs Fiber geometry

- The ribbon choice reduces considerably the contribution of suspensions thermal noise
- Dumbbell fibers can also improve the performance
- The benefits on the sensitivity are limited by radiation pressure, newtonian and CONTROL NOISE (unmodelled so far)

| fiber<br>geometry | cylindrical | ribbon |
|-------------------|-------------|--------|
| Finesse           | 885         |        |
| G                 | 23.5        |        |
| P <sub>BS</sub>   | 2.9 kW      |        |
| BNS               | 121         | 126    |
| ВВН               | 859         | 959    |





## **HEAVIER MIRRORS?**

- If ribbons are used, low frequency sensitivity can be further improved by using thicker mirrors (30 cm diam., 63 kg mass)
- The low frequency sensitivity is then limited by newtonian noise (model uncertain) and coating brownian noise

| fiber<br>geometry | BASELINE | ribbon<br>63 Kg mirr |
|-------------------|----------|----------------------|
| Finesse           | 885      |                      |
| G                 | 23.5     |                      |
| P <sub>BS</sub>   | 2.9 kW   |                      |
| BNS               | 121      | 130                  |
| ВВН               | 859      | 1053                 |





## **TWO-STEP STRATEGY?**

We are considering the idea of a two-step strategy:

- Start AdV WITHOUT SR mirror and learn to operate the power recycled interferometer with high power
- Add the SR mirror afterwards

□ A good "intermediate" sensitivity can be achieved, even better with heavier mirrors

#### Power rec AdV

BNS range: 97 Mpc BBH range: 265 Mpc 1 kHz sens.: 2 10<sup>-23</sup>

#### Dual rec AdV

BNS range: 121 Mpc BBH range: 859 Mpc 1 kHz sens.: 6 10<sup>-24</sup>





## **SUMMARY**

- A baseline design for AdV has been proposed
- Possible changes to the baseline will be considered (on the strength of the R&D progress) and discussed next year within a new AdV organization
- Important design parameters to be decided next year

We look forward to an intense exchange with LSC to make the best possible design of *AdV*