

Advanced LIGO PSL Power Stabilisation

Peter King LIGO Laboratory

Hannover LSC Meeting October 2007

LIGO-G070745-00-Z

• Lots of hard work done by

- » Frank Seifert
- » Patrick Kwee

 An injection-locked high power stage seeded by a 35-W four-stage MOPA front end with a 2-W NPRO master oscillator.

The Advanced LIGO Laser (cont.)

• Power actuators available:

- » NPRO pump diode current
- » AOM located between master oscillator and power amplifier
- » Power amplifier pump diode current
 - Possibly via a current shunt
- » High power stage pump diode current
 - Possibly via a current shunt

The Advanced LIGO PSL

LIGO

Intensity Noise Requirements

- Low frequency variations over 24 hours, less than 1% peak to peak
- Control band
 - » 0.1 to 0.4 Hz < 10⁻³
 » 0.4 to 10 Hz < 10⁻⁴
- software routine to vary pump diode current

free running

Frequency [Hz]	Relative Intensity Noise [1/Sqrt[Hz]
10	2 x 10 ⁻⁹
10 < <i>f</i> < 500	2 x 10 ⁻¹⁰ <i>f</i>
<i>f</i> >= 500	1x10 ⁻⁷

- The requirement at 10 Hz is very tough due to the combination of:
 - Iow noise level
 - Iow frequency specified

The Challenge

• What limits the power stabilisation performance?

- » Typically more than enough servo gain to suppress the relative intensity noise to the required level.
 - Observe a difference between an in-the-loop photodetector and an out-ofthe-loop photodetector.
- Is there a fundamental limit? Or are there noise mechanisms not found yet?
 - » Photodiode performance?
 - Uniformity of the diode response
 - Temperature effects
 - » Beam pointing?
 - » Acoustics

Power Stabilisation Setup

• Uses an AOM

- » Power actuator independent of laser
- Beam pointing filtered by a pre-modecleaner (*F* ~ 4100)
- Active temperature stabilisation of the photodetector
 - » With 130 mW on photodetector, temperature rises ~ 10 K
- Optimisation of stabilisation loop shape
 - » AC-coupled loop for lowest noise
 - » DC-coupled loop for a stable operating point

LASER ZENTRUM HANNOVER e.V.

Important Considerations

- Avoid ground loops, even at RF frequencies
 - » Use battery powered devices
 - » Separate power supplies for components
- Beam pointing
 - » Use pre-modecleaner
 - » Adjustment of photodetectors
- Acoustics

- » Quiet environment
- » Proper mechanical design
- Convection currents
 - » Place components in vacuum

Photodiode Uniformity

• There is a "sweet spot" on a photodiode.

LIGO

- » Not necessarily at the centre!
- » Minimises the coupling between pointing and intensity noise.

spatial uniformity measurement

Balanced Detection

- Is excess noise at low frequencies due to the photodetectors?
- Iaser stabilised below 10-8
- amplification after subtraction of photocurrents

Balanced Detection Results

- What is the source of the ~1/Sqrt[f] noise at low frequencies?
 - » Beam pointing introduced by the beamsplitter after the pre-modecleaner cavity.
 - » Photodiode material

- Noise when holes and electrons re-combine
- » Resistor current noise

10-6 Johnson noise 100 , 300K Welwyn PCF0805, 0.1%, 5ppm Phycomp TFx13 series, 0.1%, 25ppm Vishay Beyschlag MMA 0204, 1%, 50ppm Vishay SMM0204-MS1, 1%, 50ppm Wirrom ZC 0204, 1%, 50ppm Mira Electronic 2005, 1%, 100ppm Yageo RC 0805, 1%, 100ppm Yageo RC 1206, 1%, 100ppm 1/ f 10 Ξ Έ 10⁻⁸ oltage noise [V/ voltage r 10⁻⁸ 10⁻⁹ 10⁻⁹ 100 10^{1} 10² 10³ 10^{4} 10⁰ 10^{1} frequency [Hz]

resistor current noise / 100 / SMD / P<1W / 10V voltage drop

- Further reduction of beam pointing
 - » Elimination of the beamsplitter
 - » Use of modecleaner cavity as the beamsplitter
- Influence of photodetector temperature fluctuations

• Minimise beam pointing

- Careful selection of photodiodes
- Use metal foil resistors for best performance at low frequencies

