

TDI Network Simulation

Jan Harms

Universität Hannover Max-Planck-Institut für Gravitationsphysik

LSC meeting, Hannover

October 25, 2007


```
Big Bang Observer
```

Network.c (1)

Orbits.c

Detector.c

Response.c

Stochastic GW

Network.c (2)

Noise projection

- ✓ 4 LISA type space detectors
- ✔ Orbiting the sun at 1 AU
- ✓ Two collocated detectors

	Symbol	Value
Laser power	P_0	300 W
Received power	$P_{ m r}$	$\sim 9{ m W}$
Mirror diameter	D	$2.5{ m m}$
Arm length	L	$5\cdot 10^7$ m
Wavelength of laser light	λ	$355\mathrm{nm}$
Acceleration noise	$\sqrt{S_{ m acc}}$	$3 \cdot 10^{-17} \mathrm{m/(s^2 \sqrt{Hz})}$

Simple Pipeline

Moving detectors

BBO

Time-dependent distance between spacecrafts: $L_{l}(t) = |\vec{p}_{r}(t) - \vec{p}_{s}(t - L_{l}(t)/c)|$

Time-dependent light propagation direction:

$$\hat{n}_l(t) = \frac{1}{L_l(t)} \left(\vec{p}_r(t) - \vec{p}_s(t - L_l(t)/c) \right)$$

 \hat{n}_2

TDI

BBO

Network.c (1)

Orbits.c

Detector.c

TDI

GW Doppler signal

Response.c

Stochastic GW

Network.c (2)

Noise projection

Unequal-arm Michelson

GW Doppler signal

BBO

Network.c (1)

Orbits.c

Detector.c

TDI

GW Doppler signal

Response.c

Stochastic GW

Network.c (2)

Noise projection

Projected GW Doppler signal:

$$y^{\text{GW}}(t) = \frac{1}{2(1 - \hat{k} \cdot \hat{n}_l(t))}$$
$$\hat{n}_l(t) \cdot \left(h(t_{\text{s}} - \hat{k} \cdot \vec{p}_s(t_{\text{s}})) - h(t - \hat{k} \cdot \vec{p}_r(t))\right) \cdot \hat{n}_l(t)$$

FD properties from dynamical models


```
Network.c (1)
```

Orbits.c

Detector.c

Response.c

FD properties

- Transfer functions ORF
- Response functions

Stochastic GW

Network.c (2)

Noise projection

- 1. Inject δ -peaks at the origin of a master coordinate system
- Use retarded time to calculate GW signal at each detector
- 3. Calculate a detector output
- 4. Obtain FD functions via FFT

Example:

$$\gamma_{jk}(f_i) = \frac{1}{A} \sum_{\theta,\phi} \frac{\tilde{y}_j^+(f_i)[\tilde{y}_k^+(f_i)]^* + \tilde{y}_j^\times(f_i)[\tilde{y}_k^\times(f_i)]^*}{T}$$

Transfer functions

Orbits.c

Detector.c

Response.c

FD properties

Transfer functions

ORF

Response functions

Stochastic GW

Network.c (2)

Noise projection

LSC meeting 2007 - 8 / 15

Overlap-reduction functions

Orbits.c

Detector.c

Response.c

FD properties

Transfer functions

ORF

Response functions

Stochastic GW

Network.c (2)

Noise projection

Response functions

Noise projection

Primordial.c

CrossCorr.c

BBO

Network.c (1)

Orbits.c

Detector.c

Response.c

Stochastic GW

Primordial.c

CrossCorr.c

Network.c (2)

Noise projection

Complete Pipeline

LSC meeting 2007 - 13 / 15

FisherMatrix.c

BBO

Network.c (1)

Orbits.c

Detector.c

Response.c

Stochastic GW

Network.c (2)

Noise projection

FisherMatrix.c

Projection.c

Fisher matrix depends on template derivatives: $\Gamma_{\alpha\beta}(\vec{\lambda}) = \langle \partial_{\alpha} h(\vec{\lambda}) | \partial_{\beta} h(\vec{\lambda}) \rangle$

Scalar products: $\langle g|h\rangle = \frac{1}{T} \sum^{N/2} \frac{\tilde{h}(f_i)\tilde{g}^*(f_i) + \tilde{g}(f_i)\tilde{h}^*(f_i)}{S^n(f_i)}$

Numerical problems:

Brute-force solution: use GMP

Projection.c

BBO

- Network.c (1)
- Orbits.c
- Detector.c

Response.c

Stochastic GW

Network.c (2)

Noise projection

FisherMatrix.c Projection.c

- 1. Generate best fits: $\hat{\lambda}^{\alpha} = \Gamma_{N}^{\alpha\beta} \langle n | \partial_{\beta} h \rangle$ 2. Subtract best fits from data: $\delta s = s - \hat{h}$, with $\hat{h} = h(\hat{\lambda})$
- 3. Project residual data: $\delta s_{\perp} = \delta s \Gamma^{\alpha\beta} \langle \delta s | \partial_{\alpha} h \rangle \cdot \partial_{\beta} h$

