Experimental Demonstration of a control scheme for a tuned RSE interferometer for

<u>Fumiko Kawazoe,</u> Shuichi Sato, Volker Leonhardt, Osamu Miyakawa Tomoko Morioka, Atsushi Nishizawa, Seiji Kawamura, Akio Sugamoto

LIGO-G070783-00-Z

Ochanomizu University NAOJ/Caltech Tokyo University 0/24/200 Kyoto University

Motivation

- Plans to use an RSE interferometer in some of the nextgeneration interferometers for better sensitivities.
 - Adv.LIGO...Detuned RSE
 - LCGT...Tuned RSE (= zero detuning or broadband)
- Controlling DOFs is vital for a detector
 - Control scheme developed for LCGT
 - Can be a back-up design for Adv.LIGO(detuned)
- Prototype experiment to verify the control scheme

Controlling the RSE

LSC meeting, Hannover, 10/24/2007

5 degrees of freedoms

A very complicated control system due to the increased number of DOFs

Control scheme concepts

Fabry-Perot cavities' control signal---beat between the carrier and PM sidebands
Central part of the RSE--- beat between the AM and PM sidebands

•Fabry-Perot control signal are bigger by the high finesse

•Can separate FP control signal and the central control signal by not using the carrier for the central part

The central part control strategy

--- Michelson Asymmetry

For AM sidebands: 2.I = n. (n = 1,2,3...)

For PM sidebands: 2.I = (2m+1)/2 (m= 0,1,2...)

Due to the Michelson Asymmetry AM all reflect from the Michelson part PM all transmit though the Michelson part

Cavity length design AM resonant inside PRC PM resonant inside PRC+SEC

Contrasting behavior in the Michelson part \rightarrow as little as possible signal coupling

The sensing signal matrix (DC) With the prototype parameters

Fabry-Perot signals are clear from other signals.

Prototype RSE experiment

Optical layout, and Parameters

Mainly Input table, plus some detection ports

LSC meeting, Hannover, 10/24/2007

Detection ports

LSC meeting, Hannover, 10/24/2007

Suspension system

Damping magnets

LSC meeting, Hannover, 10/24/2007

Eddy current damping system

Copper Upper mass

12

Suspension system DC alignment

Actuator coils x4

Actuator magnets x4

LSC meeting, Hannover, 10/24/2007

0: not controlled 1: I- locked 2: I-, I+ locked 3: I-, I+, Is (central part) locked 4:RSE locked (longest ~15min. disturbed by human activity)

Measured signal matrix preliminary.

•Dem. phase set to maximize the desired signal

•Source:3.3kHz

Needs better lock quality for further discussion..

Results and future work

Control of a tuned RSE interferometer was successfully demonstrated.

•FP cavities with L+, and L-.

•Central part with double mod-demod.

Lock acquisition scheme for LCGT is verified with this control scheme.

Future work:

•Further investigation of the signal matrix (further diagnolazation, possible application of the delocation scheme, shot noise sensitivity as a detector after the lock is acquired)

•Measurement of the optical gain matrix with better lock quality.

Delocation scheme

Diagnolized signal matrix

			=		
	L+	L-	l+	l-	ls
BP(SD)	1	8.0×10^{-6}	-2.6×10^{-2}	6.2×10^{-4}	1.3×10^{-2}
DP(SD)	-2.2×10^{-8}	1	1.4×10^{-8}	1.3×10^{-2}	2.0×10^{-8}
BP(DD)	-4.9×10^{-2}	-1.1×10^{-4}	1	-8.6×10^{-3}	-5.3×10^{-1}
DP(DD)	-1.0×10^{-4}	7.6×10^{-2}	1.4×10^{-3}	1	1.1×10^{-5}
PO(DD)	-1.5×10^{-1}	-1.2×10^{-2}	1.1	-2.2×10^{-2}	1

Table 1. Normalized control signal matrix

	Table	2 .	Norma	$_{\rm dized}$	diagon	alized	control	signal	matrix
--	-------	------------	-------	----------------	--------	--------	---------	--------	--------

	l+	l-	ls
PO(DD)	1	-4.2×10^{-3}	$5.5{ imes}10^{-4}$
DP(DD)	2.2×10^{-3}	1	-5.6×10^{-5}
PO(DD)	5.0×10^{-4}	-1.1×10^{-7}	1