

Analysis of nonstationarity in LIGO S5 data using the NoiseFloorMon output

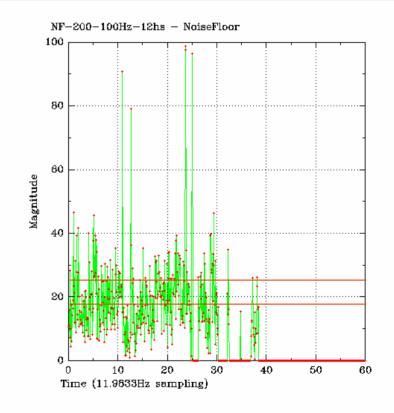
A proposal for a seismic Data Quality flag.

R. Stone for the LSC

The Center for Gravitational Wave Astronomy Department of Physics and Astronomy

The University of Texas at Brownsville

GWDAW 12 Boston, MA December 13-16, 2007 DCC# LIGO-G070842-00-0



NoiseFloorMon is a DMT monitor that analyzes LIGO data for slow nonstationarity. This poster presents a subset of results from the S5 run. The study focuses on coupling between the gravitational wave (gw) channels and the seismic channels in different frequency bands that is manifested as nonstationarity in the gw channel. Development of a seismic data quality flag based on these studies is also presented.

NoiseFloorMon DMT

NoiseFloorMon is a data monitoring tool that tracks the gw and seismic channels \triangleright The cross-correlation between the gw and seismic channels is monitored in 0-16 Hz, 16-32 Hz, 32-64 Hz, and 64-128 Hz bands \geq A threshold to indicate nonstationarity is set. The largest threshold crossings are stored each minute.

Online output of the NoiseFloorMon DMT

Developing a Seismic Data Quality Flag

Analysis of entire S5 data for H1, H2 and L1 is ongoing.
 Offline analysis: The top 10 threshold crossings are analyzed daily.
 The analyses will be inserted in the DQ database with relevant frequency and channel information. A seismic data quality flag can be developed if warranted.

Online analysis shows threshold crossings denoting nonstationary time periods.

Record the maximum every minute marking the maximum excursion outside the threshold.

Daily Analysis

- Seismic correlations
 Daily trend in the GW
 channel.
- •Comparison with Q-scan
- •Visualizing the data.

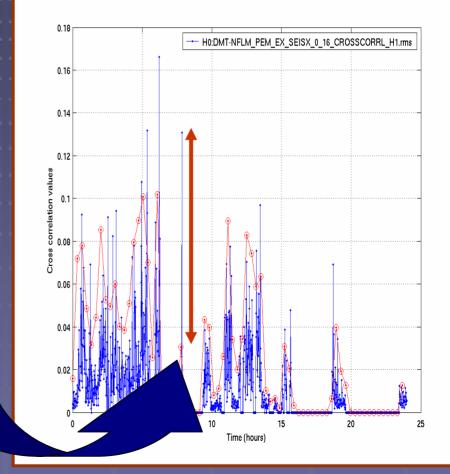
Weekly trends in the GW channel.

Monthly trends in

The GW channel.

F

A

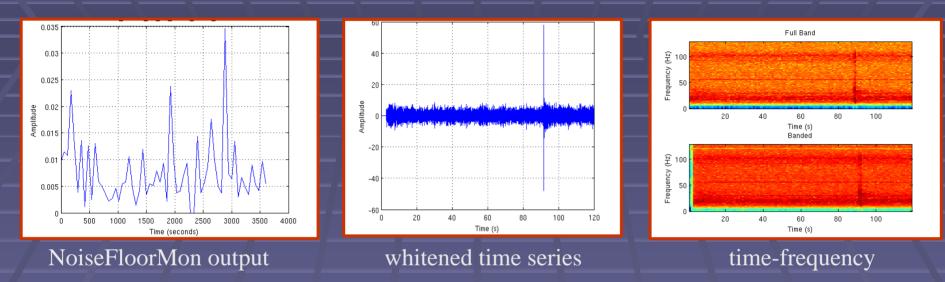

G

S

Offline Analysis

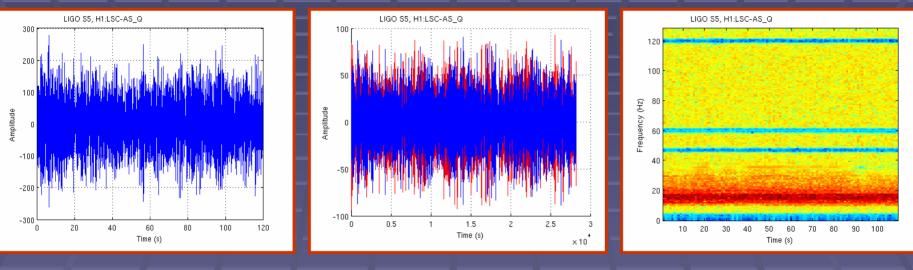
A median-based algorithm is used to set the threshold for offline analysis.^{1, 2}

The top 10 threshold crossings across all seismic channels are identified daily. The criterion used is the distance from the threshold.

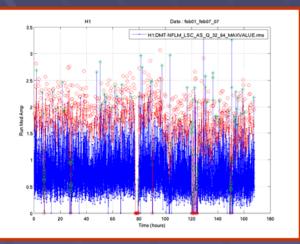

Offline Analysis

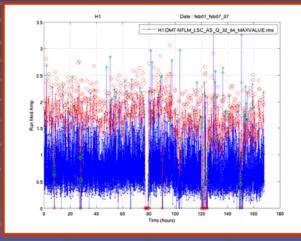
The top threshold crossings are organized daily. The analysis includes a search for the causes of nonstationarity.

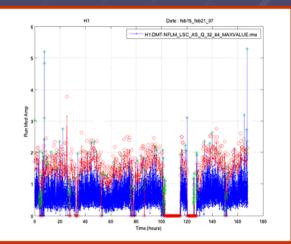
Largest Threshold Crossings


#	Site	GPS time	Channels	Frequency Bands(Hz)	Q-Scans	Comments
1	HO		<u>PEM:EX_SEISX</u> <u>PEM:EX_SEISZ</u>	64-128	<u>Qscan</u>	Loudest glitch in H2:ASC channels, but H2 not in science mode.
2	HO		<u>PEM·MX SEISZ</u> <u>PEM·EX SEISZ</u>	64-128	<u>Qscan</u>	Possibly due to earthquake in the Philippines.
			LSC:AS Q			

- A more thorough analysis of threshold crossings has been initiated in order to determine the coupling between seismic background and nonstationarity in the gw channel.
- The analysis includes visual examinations of data around the threshold crossing, including the NoiseFloorMon output, the seismic channel time series, and the full-band and banded time-frequency plots.

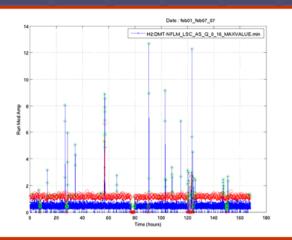

raw gw time series

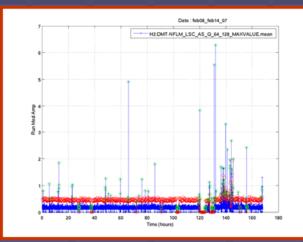

whitened gw time series

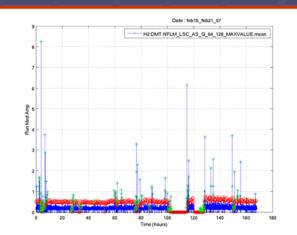

whitened time-frequency

- The gw channel signal is visually inspected around the time of the threshold crossing in order to determine obvious correlations, and to monitor the performance of NoiseFloorMon.
- The time-frequency plot is shown with known environmentally-induced frequency lines removed.

Monitoring Weekly Trends






Weekly trends for H1

- In addition to monitoring daily nonstationarity in the gw channel, the analysis is expanding to weekly and monthly trends in order to gauge longrange interactions between the seismic and gw channels.
- Blue data points are the monitor output, solid red connected circles are 2.5 times above the median-based threshold, and clear red circles are 3 times the median-based threshold. The green circles are the crossings above the solid circles.

Monitoring Weekly Trends

Weekly trends for H2

Compared to H1, the threshold crossings from H2 are significantly higher than the baseline noisefloor for the same time periods.

Analysis of Weekly Trends

121.020000	0.02402000 NO.DMT NEEMS EMELTEN OLION 02404 ONO DOOMAL IN MOUNT	
93.3295673	0.03003598 H0:DMT-NFLM_PEM_LVEA_SEISX_32_64_CROSSCORRL_H1.mean	
89.8406059	0.074084236 H0:DMT-NFLM_PEM_LVEA_SEISX_32_64_CROSSCORRL_H2.rms	
67.5640206	0.047234325 H0:DMT-NFLM_PEM_LVEA_SEISX_32_64_CROSSCORRL_H2.rms	
59.1067029	0.016026439 H0:DMT-NFLM_PEM_LVEA_SEISY_32_64_CROSSCORRL_H2.mean	
52.7898967	0.049625855 H0:DMT-NFLM_PEM_EY_SEISX_0_16_CROSSCORRL_H2.max	
51.6505452	0.019820598 H0:DMT-NFLM_PEM_EX_SEISY_32_64_CROSSCORRL_H1.mean	
49.3873668	0.035984073 H0:DMT-NFLM_PEM_LVEA_SEISY_32_64_CROSSCORRL_H2.mean	
48.7687204	0.010536067 H0:DMT-NFLM_PEM_EY_SEISZ_32_64_CROSSCORRL_H2.mean	
44.4839012	0.06100485 H0:DMT-NFLM_PEM_LVEA_SEISY_0_16_CROSSCORRL_H2.mean	
44.1324675	0.019813388 H0:DMT-NFLM_PEM_EY_SEISY_32_64_CROSSCORRL_H1.mean	
43.9296794	0.049602888 H0:DMT-NFLM_PEM_EY_SEISY_32_64_CROSSCORRL_H1.mean	
43.8131352	0.023455464 H0:DMT-NFLM_PEM_EX_SEISX_0_16_CROSSCORRL_H2.mean	
43.5920156	0.008480184 H0:DMT-NFLM_PEM_MY_SEISX_32_64_CROSSCORRL_H1.mean	
43.3049053	0.004073788 H0:DMT-NFLM_PEM_LVEA_SEISY_64_128_CROSSCORRL_H2.mean	
40.1811661	0.028511347 H0:DMT-NFLM_PEM_LVEA_SEISY_16_32_CROSSCORRL_H1.max	
39.0752772	0.009744926 H0:DMT-NFLM_PEM_EX_SEISZ_32_64_CROSSCORRL_H2.mean	
37.4932132	0.03441869 H0:DMT-NFLM_PEM_EY_SEISZ_32_64_CROSSCORRL_H1.rms	
37.3841942	0.00983748 H0:DMT-NFLM_PEM_MY_SEISX_32_64_CROSSCORRL_H2.mean	
36.6532329	0.014901032 H0:DMT-NFLM_PEM_EX_SEISX_32_64_CROSSCORRL_H2.max	
35.6694719	0.043388133 H0:DMT-NFLM_PEM_LVEA_SEISY_0_16_CROSSCORRL_H2.mean	
34.629342	0.067750703 H0:DMT-NFLM_PEM_MY_SEISX_0_16_CROSSCORRL_H1.rms	
33.7798654	0.042464027 H0:DMT-NFLM_PEM_EX_SEISX_0_16_CROSSCORRL_H2.mean	
33.7621239	0.008522559 H0:DMT-NFLM_PEM_LVEA_SEISX_32_64_CROSSCORRL_H2.rms	
33.5855059	0.007438474 H0:DMT-NFLM_PEM_MX_SEISX_32_64_CROSSCORRL_H1.mean	
33.1659758	0.042178537 H0:DMT-NFLM_PEM_MY_SEISX_0_16_CROSSCORRL_H1.rms	
32.7344129	0.025770824 H0:DMT-NFLM_PEM_EX_SEISX_32_64_CROSSCORRL_H2.max	
32.3483445	1.08365023 H2:DMT-NFLM_LSC_AS_Q_0_16_MAXVALUE.min	
31.5083573	0.003309672 H0:DMT-NFLM_PEM_EX_SEISX_64_128_CROSSCORRL_H2.mean	
30.6469108	0.003082496 H0:DMT-NFLM_PEM_EX_SEISZ_64_128_CROSSCORRL_H2.mean	
30.5086964	0.055200399 H0:DMT-NFLM_PEM_EY_SEISY_32_64_CROSSCORRL_H1.mean	
29.9777821	0.012474043 H0:DMT-NFLM_PEM_MY_SEISZ_16_32_CROSSCORRL_H1.rms	
29.541666	0.03368857 H0:DMT-NFLM_PEM_EX_SEISX_0_16_CROSSCORRL_H2.mean	
29.4194716	0.027862951 H0:DMT-NFLM_PEM_EY_SEISZ_32_64_CROSSCORRL_H2.mean	
28.1154166	0.010262137 H0:DMT-NFLM_PEM_EY_SEISZ_32_64_CROSSCORRL_H1.rms	

On a weekly basis the top threshold crossings are analyzed to determine the seismic channels with the greatest number of crossings, as well as the corresponding frequency bands.

The columns in the table correspond to the magnitude of the threshold crossings, the cross-correlation parameter, and the channel name.

Conclusions and Future Directions

Future goals include:

- > Continue analyzing S5 and future data.
- Looking for correlation with other monitor results (See The LSC Glitch Hunters: Monitoring Noise Transients in S5).
- \succ Extending the study to micro-seismic band.
- Charting monthly trends, possibly leading to a seismic data quality flag
- Developing a new monitor to measure microseism correlations/upconversions with the gw channel

References:

- 1. Development of a DMT monitor for tracking slow non-stationarities present in LIGO science data. Soma Mukherjee for LIGO Science Collaboration, Journal of Physics conference series, 32, 44-51, 2006.
- 2. Median based noise floor tracker : robust estimation of noise floor drifts in interferometric data. Soma Mukherjee, Classical and Quantum Gravity, 20, S925-S936,2003.

This work is supported by the National Science Foundation grant PHY-0555842 (2006).