Random template banks and sensitivity gain through non-optimal parameter space covering

C. Messenger, M.A. Papa, R. Prix AEI, Hannover

LIGO-G070871-00-Z

GWDAW 12 - MIT BOSTON DEC 13-16 2007

- I. GW parameter space searches
- 2. Introduction to the metric
- 3. Lattice coverings
- 4. A randomly placed template bank
- 5. Interpretation of the results
- 6. Implications

LSC GW parameter space searches

- Matched filtering searches require prior knowledge of the signal waveform.
 - Continuous : sky position, frequency derivatives, binary parameters etc.
 - Inspiral : masses, spins, sky position for LISA (eg. EMRI, IMRI).
- Many current (and future) GW parameter space searches
 - are computationally bound.
 - have complicated, high dimensional, spaces.
- We therefore need
 - efficient parameter space template coverings.
 - simple, effectual, template placement strategies.

SC Introduction to the metric

 Construct a measure of distance in the parameter space equivalent to signal-template overlap.

 $\mu = \mathrm{d}s^2 = g_{ij}\mathrm{d}x_i\mathrm{d}x_j$

- Use the eigenvectors and eigenvalues to define a set of local "unit" basis "directions" in the parameter space.
- Templates can then be placed using the diagonalised and normalised basis as an underlying guide.

$$g_{ij} = \langle \partial_i \phi \partial_j \phi \rangle - \langle \partial \phi_i \rangle \langle \partial \phi_j \rangle$$

Lattice coverings

G

- In the new basis, in general the space is *locally* Cartesian however we will consider globally *flat* spaces.
- The problem becomes the standard mathematical "covering" problem.
- The simplest n-dimensional lattice is a cubic lattice Zⁿ (sub-optimal ie. high n-sphere overlap).
- The "best known" class of lattice (for n<24) is known as the A^{*}_n
 lattice.

GWDAW 12 - MIT BOSTON DEC 13-16 2007

20

LSC Random template placement

- How efficient is a randomly placed template bank ?
- Assuming a large Euclidean space of volume V_S,
 - We place a single random template.
 We place N random templates.

The probability that the randomly located template lies outside a spherical region of maximum mismatch μ centered on the signal is

$$P_{1,n} = 1 - \frac{V_n R^n}{V_S}$$

Random template placement

- How efficient is a randomly placed template bank ?
- Assuming a large Euclidean space of volume V_S,
 - I. We place a single random template.
 - 2. We place N random templates.

 \mathcal{N}

The probability that all randomly located templates lie outside the spherical region of maximum mismatch μ centered on the signal is

$$P_{N,n} = \left[1 - \frac{V_n R^n}{V_S}\right]$$

LSC Random template placement

• It follows that the probability of achieving a mismatch of μ or less using N randomly placed templates, assuming a single signal, is

$$P_{N,n}' = 1 - \left[1 - \frac{V_n R^n}{V_S}\right]^N$$

• For $V_n R^n < V_S$ we always have $P'_{N,n} < 1$ and so we enforce that only a fraction η of the space is covered, i.e. solve the following for N

$$P_{N,n}' = \eta$$

• This gives an effective normalised thickness of

$$\theta_{\rm r}(\eta) = \ln\left(\frac{1}{1-\eta}\right)\frac{1}{V_n}$$

LSC Effective normalised thickness

LSC

Interpretation

CUBIC LATTICE

- Lattices go to a lot of extra effort to cover the last few % of the space.
- The random template bank wins because it's lazy and doesn't try to get those last few %.
- So, shouldn't we have a "lazy" lattice ?

• Let us now allow the same fraction of space to be undercovered using the cubic lattice.

- In practice the only information required in order to place a controlled random template bank is the <u>determinant</u> of the metric.
- This allows us to compute the proper volume of the space V_S, (needed to compute the number of templates N).
- In non-flat space we propose the generation of a scalar template density function.
- Templates can then be placed randomly according to this density.

- I. If we are prepared to disregard a predefined fraction of the parameter space then we can make significant computational gains using both
 - a) random template banks.
 - b) "lazy" lattices.
- 2. For non-flat space, if the determinant is known, placing a random template bank is *far* simpler than placing a lattice.
- 3. Simpler and quicker to implement than existing stochastic banks.
- 4. All of our present GW results have an associated statistical uncertainty. A random template bank simply adds to this uncertainty.