Probability of detecting compact binary coalescence with enhanced LIGO

> Richard O'Shaughnessy [V. Kalogera, K. Belczynski] GWDAW-12, December 13, 2007

Will we see a merger soon?

Isolated binary evolution

Synthetic starbursts:

- *StarTrack*: simulates many binaries
- <u>Many</u> parameters for unknown physics (e.g., SN kicks)
- Convolved with star formation rate (SFR)

Computational tradeoffs:

BH-BH distributions: tricky + wide mass range

+ merging massive binaries : rare (stellar IMF) but visible much farther away

+ much rarer than NS-NS, BH-NS

Why are BH-BH binaries tricky?

High masses: <u>one</u> random example (~100 merging BH-BH binaries)

...and

strong variations when different assumptions used

Why are BH-BH binaries tricky?

Long delays: (same example model)

log [P(<t)] (cumulative) NS-NS : Gray

• 100x more from **short** delays (extremely short in example)

BH-BH : Blackmostly from long delays (Gyr) (note *log* scale)

Implications:

- BH-BH mergers preferentially in old populations ("elliptical galaxies")
 - little/no blue light
- Old populations have significant fraction (~ 60%) of all mass

Other factors: Systematics

Binary fraction (rate down) 15-100%

Abt 1983; Duquennoy and Mayor 1991; Lada 2006

Star formation history: (up/down)

Hopkins & Beacom ApJ 651 142 2006

(astro-ph/0601463): Fig. 4

Implications:

- Must propagate systematic errors: O(few)
- Influences probability of high detection rates

Previous results

Motivation:

O'Shaughnessy et al. astro-ph/0610076

- Explore dominant uncertainty: binary evolution
 - check for surprises
- Compare with several (4) observations of <u>pulsar</u> binaries <u>in Milky Way(!)</u>
- Interpret as constraints in *model* space (7-dimensional)

Key features

- Thousands of "short" simulations [O(100) NS-NS binaries]
- Computational tradeoff:

Many models --> low accuracy for each Use **one chirp mass** for each type of binary for **every** model

- Dominant uncertainty propagated (binary evolution).
 - **Ignores** several factors O(few)
 - Constant SFR assumed. Cosmological SFR not included.
 - All star form in binaries
 - Range uses low-mass estimate independent of mass or mass ratio

[+ based on fixed mass for each binary type]

$$D = D_{bns} (M_c / 1.2 M_{\odot})^{5/6}$$

Previous results

Errors could be O(few) for LIGO

...+ observational constraints

Today's results

Motivation

O'Shaughnessy et al astro-ph/0706.4139 O'Shaughnessy et al (in prep)

- LIGO detection rate, including BH-BH
- Propagate all uncertainties $\sim O(x \ 1)$ effect on rates
- Key features:
- Fewer [O(300)] larger [O(10⁵) NS-NS binaries] simulations
 - 1d PDFs extracted: mass and merger time
 - Include sampling errors: $N_{simulations}$ and $N_{binaries}$
- Vary fraction of stars forming in binaries
- Convolve with star formation history of <u>universe</u>, not MW
 - **Estimated** uncertainty x 2
- Only *one* constraint applied: reproducing Milky Way merger rate
 - Bayesian constraints incorporate above uncertainties
- Simple range model...

but propagate O(10%) "errors" for neglected params

$$D=D_{bns}(M_c/1.2M_{\odot})^{5/6}$$
 Gotomorphic for the second secon

Today's results

Expressions Used

Merger rate:

Detection rate:

Additional systematic errors:

 $R_K(t) = \int_{-\pi}^{0} d\tau \frac{d\rho}{d\tau} \lambda_K \frac{dP_K}{d\tau} (t-\tau)$ $R_{D,K} = R_K \left[\frac{4\pi}{3} D_{\mathrm{bns}}^3 \right]$ $\times \int dm_c \, \left(\frac{m_c}{1.2M_{\odot}}\right)^{15/6} \frac{dP}{dm_c}$

 $G_{K}(X)$ Kernel includes binary fraction, SFR, sampling (accuracy of dP/dt, dP/dm_c) Propagates <u>logarithmic</u> errors.

Detection rate PDF:

$$p(\log R_D) = rac{1}{N} \sum_K G(\log R_D - \log R_{D,K})^{\mathbb{R}}$$

...+ observational constraints

G

Results I: Rate PDFs

Results I: Rate Cumulative

Key Blue : D_{bns} =15 Mpc Red : D_{bns} =27 Mpc

Heavy : best (errors+ constraints)

Dashed : raw simulation data

Thin : no PSR constraints

Significant fraction of models predict $R_D > 1/yr$ Most have $R_D > 1/10 yr$

Results II: Detection probability

Probability of *something* **being seen**:

- Initial : Low (too few models to trust P \sim 5% \sim O(1/100))
- Advanced: High (" 1-P <~ O(1/100))
- Enhanced: High (• Enhanced: $P_{\text{detect}} \cong 0.34 + 0.64 \log \frac{VT}{V_c \text{yr}}$

 $T = T_1 \text{yr}$ $V_c = \frac{4\pi}{3} (27 \text{Mpc})^2$

...remember, binaries in globuar clusters not included !

Summary and future directions

- <u>Present detctors</u>: SFR uncertainty High SFR permits highest *a priori* rates
- <u>Advanced detectors</u>: Guarantee detection? Find how few models *wouldn't* lead to detections Add large-z effects (beampattern, NR-accurate range)
- <u>Clusters</u>: Already constrained

... future estimates should involve output from GW detectors!