

Searches for a Stochastic Background of Gravitational Waves

John T. Whelan

john.whelan@ligo.org

AEI Potsdam (for the LIGO Scientific Collaboration)

> AAS 211th Meeting 2008 January 9 G080001-03-Z

- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis

- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis

Sources of Stochastic Gravitational Waves

- Stochastic Gravitational-Wave background: superposition of unresolved GW sources
- "Cosmological" sources include inflation, pre-big-bang, phase transitions, cosmic strings
 - Probably ∼ isotropic

- "Astrophysical" sources include unresolved binaries, neutron star instabilities, LMXBs
 - Can show anisotropies if dominated by local universe

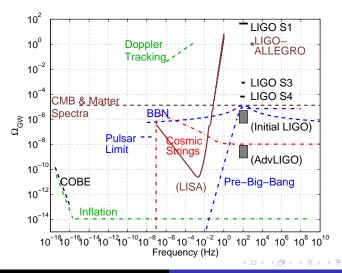
LIGO

Characterization of Stochastic GW Background

- Focus on isotropic, unpolarized, stationary, Gaussian backgrounds. (We also search for backgrounds w/strong anisotropy, but beyond scope of this talk)
- One way of defining spectrum of isotropic background: via gravitational-wave contribution to $\Omega = \frac{\rho}{\rho_{crit}}$:

$$\Omega_{\text{gw}}(f) := \frac{1}{\rho_{\text{crit}}} \frac{d\rho_{\text{gw}}}{d \ln f} \equiv \frac{f}{\rho_{\text{crit}}} \frac{d\rho_{\text{gw}}}{df}$$

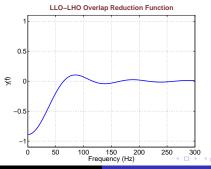
Note $\rho_{\text{crit}} \propto H_0^2$. Our results assume $H_0 = 72 \, \text{km/s/Mpc}$


Equivalent GW strain power (in interferometer w/⊥ arms)

$$S_{\text{gw}}(f) = \frac{3H_0^2}{10\pi^2} f^{-3} \Omega_{\text{gw}}(f)$$

Stochastic GW "Landscape"

- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis


Expected Cross-Correlation

LIGO

Cross-correlation between GW signals in pair of detectors:

$$\langle \widetilde{\mathbf{s}}_1(f)^* \, \widetilde{\mathbf{s}}_2(f) \rangle = \gamma(f) S_{\mathsf{gw}}(f)$$

• Geometry enters via Overlap Reduction Function $\gamma(f)$, depending on orientation & separation of detectors

Optimally Filtered Cross-Correlation Statistic

Background Partial S5 Results

Summary

- Assume $\Omega_{gw}(f)$ constant across band
- Cross-correlation gives point estimate of $\Omega_{gw}(f)$:

$$\widehat{\Omega} = \int df \, \widetilde{s}_1^*(f) \, \widetilde{Q}(f) \, \widetilde{s}_2(f)$$

Maximize sensitivity w/Optimal Filter

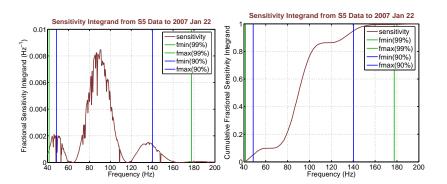
$$\widetilde{Q}(f) \propto \frac{\gamma(f)}{f^3 P_1(f) P_2(f)}$$

Can estimate error bar from noise:

$$\sigma \propto \left(T \int df \, \frac{[\gamma(f)]^2}{f^6 P_1(f) P_2(f)}\right)^{-1/2}$$

• Short-time estimates $\{\widehat{\Omega}_i\}$ weighted by $\{\sigma_i^{-2}\}$ & averaged

- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis


S5 Data

- LIGO Hanford Observatory (4 km H1, 2 km H2) observed 2005 Nov 4-2007 Sep 30
- LIGO Livingston Observatory (4 km L1) observed 2005 Nov 14-2007 Sep 30
- Preliminary, Partial result being presented here includes H1-L1 coïncident data up to 2007 Jan 22 378608 overlapped 60 sec segments ≈ 140 days effective observing time
- Duty cycles & sensitivity improved during run:
 Up to 2007 Jan 22 ≅ 1/2 of coïncident observing time
 & ~ 1/3 of noise-weighted observing time (total sensitivity)
- Use preliminary calibration; will be revised for final result;
 H2-L1 correlation measurements will also be included

LIGO

Frequency Range Determined by Sensitivity

Frequencies kept for analysis give 99% of sensitivity (measured by integrand of σ^{-2}): 41.5 Hz < f < 177.5 Hz (90% comes from range 48.5 Hz < f < 140.25 Hz)

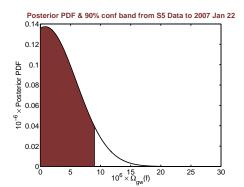
- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis

PRELIMINARY Cross-Correlation Result

LIGO

• Optimally combined PRELIMINARY analysis of data to 2007 Jan 22 gives estimate on $\Omega_{\rm gw}(f)$ (assumed to be constant over 41.5 Hz < f < 177.5 Hz)

$$\widehat{\Omega} = 1.0 \times 10^{-6}$$
 $\sigma = 5.2 \times 10^{-6}$

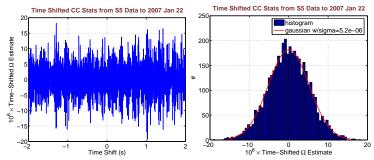

- Null result; set upper limit on $\Omega_{gw}(41.5 \, \text{Hz} < f < 177.5 \, \text{Hz})$ by constructing Bayesian posterior:
 - S4 posterior as prior (\sim Gaussian w/90% UL 6.5 \times 10⁻⁵)
 - Marginalize over calibration errors (Gaussian priors) effectively adds systematic error of $\sigma^{cal} = 0.15\widehat{\Omega}$

Posterior PDF

LIGO

90% confidence level upper limit is $9.0\times10^{-6}\,$

- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis

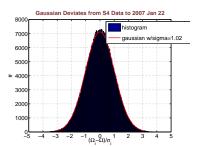


Time-Shift Analysis

LIGO

• Can simulate small time-shifts w/inverse Fourier transform of integrand of $\widehat{\Omega}$

• \sim Gaussian; best fit has standard deviation 5.20 \times 10⁻⁶ consistent w/independently calculated $\sigma = 5.21 \times 10^{-6}$



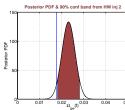
Distribution in Time

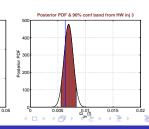
LIGO

Measurement combined from 378608 independent numbers Ω_i ; Can't quite histogram (different error bars σ_i)

Can construct Gaussian deviates $\frac{\widehat{\Omega}_i - \widehat{\Omega}}{\sigma_i}$

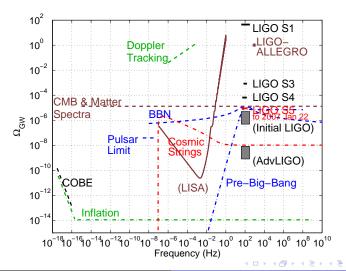
Injections of Simulated Signals


- Have added simulated signals ("software injections") Can recover $\Omega_{\text{ow}}(f) \sim 4 \times 10^{-5}$ from full data stream
- Did 3 "hardware injections"; varying strengths & durations
 - Inject into instruments w/known forces on end test mirrors
 - Some common unknown calibration factors systematic calibration error only $\sigma^{\text{cal}} = 0.12 \hat{\Omega}$
 - Designed to have significant signal-to-noise; σ^{cal} bigger effect than statistical error bar σ



Hardware Injection Results

	inj 1	inj 2	inj 3
T _{eff} (min)	12.9	29.3	215.5
$\Omega_{\sf gw}^{\sf inj}$	1.88	1.76×10^{-2}	6.3×10^{-3}
$\widehat{\Omega}$	1.82	2.31×10^{-2}	6.9×10^{-3}
σ (statistical)	0.05	0.13×10^{-2}	0.2×10^{-3}
σ^{cal}	0.21	0.27×10^{-2}	0.8×10^{-3}


- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis

LIGO

Stochastic GW "Landscape" Including New Result

Big-Bang Nucleosynthesis

ŁIGO

- BBN constrains energy density present @ nucleosynthesis: $\Omega \lesssim 1.1 \times 10^{-5}$
- Total contribution from GW background

$$\Omega_{\mathsf{gw}}^{\mathsf{tot}} = \int \frac{df}{f} \, \Omega_{\mathsf{gw}}(f)$$

- Our excluded background $\Omega_{\rm gw}(f)=9.0\times 10^{-6}$ over 41.5 Hz < f < 177.5 Hz would have $\Omega_{\rm gw}^{\rm tot}=1.3\times 10^{-5}$ (Note 90% of sensitivity comes from 48.5 Hz < f < 140.25 Hz; energy in BG confined to that range would be $\Omega_{\rm gw}^{\rm tot}=9.6\times 10^{-6}$)
- Direct limits from LIGO now comparible to BBN limit

- Background
 - Stochastic Gravitational-Wave Backgrounds
 - Cross-Correlation Method
- Partial S5 Results
 - Details of S5 Analysis
 - PRELIMINARY Upper Limit Result
 - Validation
- Interpretation
 - Comparison to other Limits
 - Expected Sensitivity of Full S5 Analysis

Projecting Sensitivity for Full S5 Run

- PRELIMINARY result through 2007 Jan 22:
 - $\widehat{\Omega} = 1.0 \times 10^{-6} \& \sigma = 5.2 \times 10^{-6}$
 - 90% upper limit $\Omega_{\rm gw}(41.5\,{\rm Hz} < f < 177.5\,{\rm Hz}) \le 9.0 \times 10^{-6}$
 - \bullet Used $\sim 1/2$ of coı̈ncident H1-L1 data in S5
- Expectations for full S5 analysis:
 - Error bar shrinks like square root of observing time
 - Sensitivity improved during S5; estimate ~ 1.7× improvement in error bar
 - \bullet Can think of partial result as $\sim 1/3$ of observing power

Summary

- Searched for stochastic GW background in LIGO S5 data through 2007 Jan 22
- Use optimally filtered cross-correlation technique; Look for correlations between 4km Livingston & Hanford detectors
- Analysis so far includes $\sim 1/2$ of coı̈ncident observing time or $\sim 1/3$ of noise-weighted observing time (expect factor of ~ 1.7 increase in sensitivity for full S5)
- PRELIMINARY result (90% CL) Ω_{gw} (41.5 Hz < f < 177.5 Hz) \leq 9.0 × 10⁻⁶
- Direct LIGO measurements now comparable to constraints from big-bang nucleosynthesis

