Una breve rassegna di alcuni recenti risultati di LIGO

M.Alessandra Papa

Max Planck Inst. f. Gravitationsphysik and Univ. of Wisconsin- Milwaukee

Simposio in onore di Gianvittorio Pallottino, Febbraio 2008, Univ. di Roma ``La Sapienza''

UNIVERSITY of WISCONSIN

LIGO DCC: G080057-00-Z

LIGO

(Laser Interferometer Gravitational-wave Observatory)

One interferometer with 4 km arms, one with 2 km arms

LIGO has completed its 5th science run (S5)

5th Science Run of LIGO

LIGO's window

In the sensitive band of current ground-based detectors one could detect signals in four categories:

- from inspiraling compact objects
- bursts, typically arising from catastrophic events
- continuous quasi-periodic waves
- stochastic background of gravitational radiation

This scheme largely reflects different analysis techniques

Long duration Short duration

Matched filter

Compact binary inspirals

Template-less methods

Bursts

This scheme largely reflects different analysis techniques

Signals from inspiraling compact objects are considered to be the most promising source for ground based detectors

Let's start from these.

Expected signal

- In the LIGO band we can in principle observe inspirals from binaries with total mass < 200Msol
- How well we can predict all these waveforms is another matter
- Post Newtonian waveforms accurately model evolution across the entire LIGO band for systems with total mass smaller than 3Msol

Compact binaries search pipeline schematics

S4 Upper limit results

LSC, arXiv:0704.3368, submitted to PRD

Astrophysical predictions:

- Merger rates are expressed as events per unit time per unit galaxy

- BNS merger rates inferred^[p91,nps91] from 4 known binary systems suggest ranges^[kk04,k04] of

$$10-170 \times 10^{-6} \text{ yrs}^{-1} \text{ L}_{10}^{-1}$$

with $\text{L}_{10} = 10^{10} \text{ L}_{\text{B,sun}}$ and $\text{L}_{\text{B,sun}} = 2.16 \times 10^{33} \text{ erg/s}$

- BBH/BHNS merger rates are much less certain and merger rates lie in the range^[s05,s06]

BBH: 0.1 - 15 X 10⁻⁶ yrs ⁻¹
$$L_{10}^{-1}$$

BHNS: 0.15 - 10 X 10⁻⁶ yrs -1 L_{10}^{-1}

p91: Phinney, ApJ 380, L17, (1991)
nps91: Narayan, Piran, Shemi, ApJ 379, 17, (1991)
kk04: Kalogera et al, ApJ Letters 614, L137 (2004)
k04: Kalogera et al, ApJ 601, L179 (2004)

s05: O'Shaugenessy et al, ApJ 633, 1076, (2005) **s06:** O'Shaugenessy et al, astro-ph/0610076

What does 10-170 X 10⁻⁶ yrs ⁻¹ L₁₀⁻¹ translate into, for expected detection rate for a search ?

• $\Re = 10-170 \times 10^{-6} \text{ yrs}^{-1} \text{ L}_{10}^{-1}$: number of events per "galaxy" per megayr

 $R = \Re X C X T$ detection rate

X C: number of "galaxies" the search can see L_{10} X T: observation time of search

- $C = C(D_{H})$ D_{H} : horizon distance of a search: maximum distance at which a signal may still be detected

Cumulative luminosity function

Catalog of galaxies has been developed and cumulative luminosity $C(D_{H})$ computed as a function of the distance (*Kopparapu et al, arXiv:0706.1283v1*)

Horizon distance of a search: maximum distance at which a signal may still be detected.

The horizon distance (for data that has been analyzed)

LSC, S3-S4 inspiral search, arXiv/0704:3368, Talk by A. sengupta

... for S4 these translate in expected rates of

≈ 1/(2000yrs)--1/100(yrs) for BNS, with DH ~ 16Mpc

≈ 1/(1000yr) -1/(10yrs)
for BBH,
with DH ~ 100Mpc

Not so great

... for our next detectors

LSC, S3-S4 inspiral search, arXiv/0704:3368

S5 sensitivity: estimated rates

Searches triggered by em observations

GRB070201

- Described as an "intense short hard GRB"
- a = 11.089 deg, d = 42.308 deg, error = 0.325 sq. deg, center is 1.1 deg from center of M31 (~800kpc) and includes its spiral arms
- $E_{iso} \sim 10^{45}$ ergs if at M31 distance
- Hanford detectors were taking data

Short GRBs and GRB070201

Most likely short GRBs are associated with the NS-NS or NS-BH merger. They are the em counterpart of strong gravitational wave signals.

Simultaneous detection of GRB and a GW event would

- firm evidence that hard GRBs do indeed stem from compact binary mergers
- provide insight into merger physics
- measure cosmological parameters (luminosity distance from GWs, red shift from em)

A non-detection of GRB070201 would

- Exclude progenitor in mass-distance regio
- Bound the GW energy emitted by a source M31

GW observations arXiv:0711.1163v2, submitted to ApJ Lett

Search for signal from compact binary

- » standard matched filter pipeline applied to 180s around GRB time
- $_{\rm sol}$ \sim $1M_{\rm sol}$ < m1 < $3M_{\rm sol}$ and $1M_{\rm sol}$ < m2 < 40 $M_{\rm sol}$

Search for unmodeled burst

- » cross-correlation of data streams, within 180s of GRB time
- » cross-correlation windows: 25ms and 100ms

Inspiral search results

We then evaluate the probability of a null result given a progenitor with certain parameters at a given distance:

$$p[0|h(t;m_2,D)] = \int p(\vec{\mu}) p[0|h(t;m_2,D,\vec{\mu})] d\vec{\mu}$$

$$\vec{\mu} = (m_1,\vec{s}_1,\vec{s}_2,\iota,\phi_0,t_0)$$

Inspiral search results

- uniform priors were used on m_1, t_0, ϕ_0
- priors on $\iota, \vec{s_1}, \vec{s_2}$:
 - $0 \le \frac{a}{M} \le 0.75$ for neutron stars
 - $0 \leq \frac{a}{M} \leq 0.98$ for black holes

- spin directions uniformly distributed on sphere

S: spin angular momentum.

- $-1 \leq \cos(\iota) \leq 1$ uniformly distributed

Inspiral search results: exclusion regions

Continuous GW signals

Continuous GW signals

Pulsars (spinning neutron stars) are known to exist!

- Emit gravitational waves if they are non-axisymmetric:

1. Known pulsars (radio & x-ray) (e.g., Crab pulsar)

Position & frequency evolution known (including derivatives, timing noise, glitches, orbit)

2. Unknown neutron stars

Nothing known, search over sky position, frequency & its derivatives.

3. Accreting neutron stars & LMXBs (e.g., Sco-X1) Position known; some need search over freq. & orbit.

 Targeted sky position: galactic center, globular clusters, isolated non-pulsing neutron stars (e.g., Cas A)
 Search over frequency & derivatives.

Known pulsars, preliminary S5

Known pulsars, preliminary S5

Joint 95% upper limits from first ~13 months of S5 using H1, H2 and L1 (97 pulsars)

Known pulsars, preliminary S5 $h_0 = \frac{16 \pi^2 G}{c^4} \underbrace{\epsilon i j^2}_{i} \text{ known} \text{ fiducial value}$

Lowest ellipticity upper limit: PSR J2124-3358 (v_{gw} = 405.6Hz, r = 0.25 kpc) ϵ = 7.3x10⁻⁸

Known pulsars, preliminary S5

Known pulsars, preliminary S5

 $h_{0 \text{ spin-down}} = 1.4 \times 10^{-24}$ $h_{0 \text{ S5 first year}} = 5 \times 10^{-25}$ at fiducial $I = 10^{38} \text{kgm}^2$

$$-\mathcal{E}_{spin-down} = 7.3 \times 10^{-4}$$

 $-\mathcal{E}_{S5 \text{ first year}} = 2.6 \text{ x}10^{-4}$ less than 13% power is carried away by Gws. Energy budget cannot exclude this GW emission.

But / could be higher than the fiducial value. No definitive observational evidence but a number of theoretical investigations^{*} suggest:

 $I = 1.3 \times 10^{38} (\text{kg m}^2)$

Upper limit on h_o can be recast as exclusion area on $I\epsilon$ plane:

The main problem

- the most promising searches are the ones for objects that we do not know about
- very large parameter space: entire sky, hundreds of Hz, wide fdot range
- one gains in sensitivity by increasing the observation time
- for coherent searches (the most sensitive) the gain in resolution is very fast with increasing observation time
- the computational cost soon (very few days) becomes unmanageable
- have to resort to hierarchical techniques, using non-coherent methods as well

Einstein@Home

http://einsteinathome.org/

Getting Started Latest Headlines

C

000

Welcome to Einstein@Home

Einstein@Home screensaver

Join Einstein@Home According to Albert Einstein, we live in a universe full of gravitational waves. He suggested that the movements of heavy objects, such as black holes and dense stars, create waves that change space and time. We have a chance to detect these waves, but we need your help to do it!

G - Google

Einstein@Home uses computer time donated by computer owners all over the world to process data from gravitational wave detectors. Participants in Einstein@Home download software to their computers, which process gravitational wave data when not being used for other computer applications, like word processors or games. Einstein@Home doesn't affect the performance of computers and greatly speeds up this exciting research.

Learn more about the project.

Done

Q

Einstein @Home

- » APS outreach
 - World Year of Physics 2005 gravity on the public's mind
 - People are excited if they can pitch in to real science
 - Look how popular SETI@Home is!
 - E@H site: http://einstein.phys.uwm.edu/
 - APS site: http://einsteinathome.org/

more than 150 000 active users
 delivers ~ 100 TFlops sustained 24X7

GW astronomy now ...

...we're getting there. GW observations are *starting* to contribute astrophysical information.

If GW were observed now no cherished belief would be challenged.

If GW are not observed by advanced ground-based detectors and LISA, cherished beliefs will be questioned.

.... in the mean time.... stay tuned!

The End