Virgo Control Noise Reduction

IIOIIVIRGD

Gabriele Vajente Scuola Normale Superiore, Pisa University and INFN Sezione di Pisa

LSC-Virgo collaboration meeting Pasadena, March 17th -20th 2008

((O)) Summary

- Many sensitivity improvements after the end of VSR1
- Made possible by large reduction of control noises

Longitudinal control noise

((O)) Longitudinal control

((O)) Longitudinal control noise / 1

((O)) Longitudinal control noise / 2

7

((O)) Longitudinal control improvements / 1

- Main modulation frequency 6.24 MHz used for longitudinal and angular control
 - Resonant in PRC
 - Anti-resonant in Fabry-Perot cavities
 - TEM 01 resonant in Fabry-Perot Cavity (Anderson-Giordano technique)
- After the run, new modulation at 8.32 MHz phase-locked to main one
 - Not resonant in PRC or FP
 - ITF reflection demodulated at 8.32 MHz

((O)) Change in longitudinal error signals

Old (VSR1) configuration	New sensing scheme
MICH	MICH
Controlled with	Controlled with
B5_Q + B2_6MHz_P + B2_18MHz_P (< 5 Hz)	B2_8MHz_P
UGF @ 15 Hz	UGF @ 10 Hz
PRCL	PRCL
Controlled with	Controlled with
B2_6MHz_P + B2_18MHz_P (< 5 Hz)	B5_Q
UGF @ 40 Hz	UGF @ 80 Hz

((O)) Change in control filters / 1

Better accuracy (improved gain below 100 mHz)

((O)) Change in control filters / 2

Better optimization of high frequency cut-off (above 10 Hz)

Gabriele Vajente – LSC-Virgo Meeting – Pasadena March 19th 2008

((O)) Change in control filters / 3

Optimized phase and gain margins

 To avoid calibration transfer function variations with cavity pole frequency (driven by Etalon effect in input mirrors)

((O)) Noise cancellation techniques

- Auxiliary loop control noises have a large coupling to dark fringe "Cancellation" technique:
 - MICH, PRCL, CARM corrections are sent to the end mirror differential mode

 Corrections need to be filtered to compensate different actuator responses

DARM-loop

- With suitable noise injection the correct filter can be computed
- High accurate fitting to obtain digital filter for the online noise cancellation

((O)) Noise cancellation techniques /2

- Very good performances
 - MICH control noise suppressed by ~1000 between 10 and 300 Hz
 - PRCL control noise suppressed by ~10 between 10 and 1000 Hz
 - CARM control noise suppressed by ~50 between 1 and 30 Hz
- Shape is very stable (depends only on actuator responses)
- Gain is changing a lot: servoed using a calibration line (bandwidth ~20 mHz)

((O)) Actuation noise reduction

((O)) Environmental noise

Gabriele Vajente – LSC-Virgo Meeting – Pasadena March 19th 2008

Angular control noise

((O)) Angular control noise /1

((O)) Angular control noise /2

((O)) Galvo centering systems

- Quadrant-diodes mounted on translation stages
 - Noisy and slow
- Better centering with galvo systems
- Installed on both end benches
- Avoid mis-alignments induced by quadrant mis-centering

((O)) Sensor noise reduction

- Some signals were limited by electronic noise (demodulator board noise)
- Improved electronic installed
- Allow switchable electronic gains to cope with different beam powers

((O)) Improved control filte

Crucial to reduce noise in the 100-400 Hz region Scattered light up-conversion

- To increase accuracy by i (below 1 Hz)
- To reduce high frequency noise re-introduction (above 5 Hz)

((O)) Conclusions

- Longitudinal and angular control noise no more limiting the sensitivity
- Below design from 20-30 Hz up
- In 4 month after the run reduced
 - Angular noise by a factor ~10 at 10 Hz
 - Longitudinal noise by a factor ~30 at 30 Hz
- Allowed a better understanding and mitigation of other noise sources
 - Environmental, actuation, magnetic, etc...

 10^{2}

10-22

10-17

Gabriele Vajente – LSC-Virgo Meeting – Pasadena March 19th 2008

 10^{4}

 10^{3}

Frequency [Hz]

 10^{4}

LIGO LLO 4km S5 LIGO LHO 2km S5