Mesa beam discussion

J. Miller

Juri AGRESTI, Erika D'AMBROSIO, Riccardo DESALVO, Danièle FOREST, Vincenzo GALDI, Bernard LAGRANGE, Jean Marie MACKOWSKI, Christophe MICHEL, Jean Luc MONTORIO, Nazario MORGADO, Vincenzo PIERRO, Laurent PINARD, Innocenzo M PINTO, Alban REMILLEUX, Barbara SIMONI, Marco G TARALLO, Phil WILLEMS, Hiro YAMAMOTO

j.miller@physics.gla.ac.uk

OWG parallel session

Benefits

Ratio of displacement noise Gaussian/ Mesa ~2 for all sources
m/Hz^1/2, single fused-silica test mass, 34cm diam x 20cm thick

Achievements so far

Mirror manufacture

- » demonstrated for flat-flat configuration
- » full size concentric feasible
- Resonated mesa mode
 - » injected Gaussian beam, produced mesa beam
 - » theoretical efficiency ~94%
- PDH locking

2.45 2.5

2.55 2.6

 Tilt sensitivity
* ~x3 worse than equivalent Gaussian

HOM

To do with present setup

Examine coupling to Gaussian modes

- Differential wavefront sensing
- Anything else?

To do with an improved set up

Test a second mirror manufacturing technique
magnetorheological finishing – QED

Concentric vs. Flat-Flat configuration
» possible radiation pressure instabilities

The future

What must we demonstrate to be ready for a full scale detector?

- IFO control readout, lock acquisition, angular stability
- Recycling
- Mirror manufacture figure, scatter, absorption....
- Thermal issues
- Radiation pressure stability, Parametric instability
- Measure thermal noise directly

How best to achieve this?

- Simulation
- Medium baseline IFO (~150m)
- Pathfinder optics