Astrophysics with LIGO

R. O'Shaughnessy (PSU) Columbia physics seminar April 16, 2008

LIGO-G080276-00-Z

What can LIGO do?

"Hear"

- Narrow frequency sensitivity ~ 100 Hz
- Weak orientation dependence (each "ear" like dipole radio antenna)
- Good hearing!
 - "loud" (NS binaries) :
 - O(15 Mpc) now, O(30) Mpc soon, O(160) Mpc in 8 yrs
 - "faint" (pulsars) :
 - Nearby (Milky Way only)

What can LIGO+VIRGO do?

Locate:

• Triangulation!

- Just accurate timing
 - + coherent multidetector search/joint likelihood (e.g., synthetic aperture) stronger signals -> better location

What is out there to see?

Detectors

Pulsar timing CMB fluctuations

Space-based interferometers (LISA)

LIGO (running)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. Ground-based interferometers (LIGO/VIRGO/GEO/TAMA)

What is out there for it to see?

log f (Hz)

What can we learn?

Three examples:

- Mystery of short GRBs (briefly)
- What is neutron star matter? (longer)
- How do paired stars evolve? (longest)

...and a fourth (if time):

• Constraining star clusters and star formation

1: Short GRBs

GRBs generally

- "Fireball model": central engine hidden (unless post-blast wave signature: SN = long?)
- Non-fireball post- or preburst signal needed

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Swift website

Two classes

Long : Post-burst (some) are SN; correlate to early SFR; ... Short :

What are short GRBs?

Merger motivation?

No SN structure in afterglow

GRB 051221 (Soderberg et al 2006)

• In both old, young galaxies

Selected short GRBs			
GRB	Host	L/L_*	SFR
			M⊙/yr
050509b	E	3	< 0.1
050709b	Sb/Sc	0.1	0.2
050724	E	1.5	< 0.03
051221	S	0.3	1.4
060502	E	1.6	0.6
(Nakar, 2006 : Table 3)			

•Occasional host offsets

GRB 050709 (Fox et al Nature 437 845)
Energetics prohibit magnetar for all
[more later]

How do merger models work?

Other channel(s)

Hypermassive star (Faber et al 2006; Duez et al 2007; Liu et al 2008) + B, accretion, baryonic wind, tidal tail [extended emission]

Other merger models...

Checking GRBs with LIGO?

Using only 'inspiral' phase

- ____[avoid tides, disruption!]
- Mass Must match! df/dt -> mass

Distance

Hey...why just look at inspiral? (=point-particle approximation)

...for part 2: Most NS mergers "slosh" GW - clues to structure?

...but for now, *mostly* NS disruption frequency out of band $\Omega_{disrupt} \simeq \Omega_{kepler} \leftrightarrow f \simeq 1000 Hz$ Predominant effect is point-particle mechanics

Example: GRB 070201

Burst coincident with (some of) Andromeda

...but no inspiral signal Range >>> d(M31)=770 kpc Exclude at > 99%

Abbott et al

2: Neutron star matter

Challenge of nuclear matter

Density ~ few * nuclear

Mildly relativistic

Fermi energy permits more particles (hyperons, kaons, ...). Quark/strange matter?

Highly asymmetric (n>>p) : unlike usual nuclei

Nontrivial nuclear extrapolations required

--> wide range of predictions

Observations?

M, R relation...hard [e.g., Ozel (2006)]

Lattimer and Prakash, astro-ph/0612440

Method 1: Merger waves

Tidal disruption point

Disruption terminates signal [Faber et al PRL 89 1102f] Not in band (f~ f_{breakup} ~1000 Hz) **Golden binaries?** + aLIGO

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Sloshing of hypermassive transient/remnant disk

Not in band

Weak

- need implausibly close (20 Mpc)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

+ aLIGO

Oechslin and Janka PRL 99 1102 (2007)

Tidal-orbit coupling

Flanagan and Hinderer, PRD 75 1502 (2008)

Change early part of signal

Limit "Love number"

: aLIGO can weakly constrain

Method 2: Supernova waves

Supernova "kicks" young NS:

 Obvious problem: SN <u>rare</u> in MW won't see outside MW

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

C. Ott APS 2008-04-14

http://stellarcollapse.org/talks/Ott_APS_April_2008.pdf

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

New Extended 2D GR Model Set

[Dimmelmeier, Ott, Marek, and Janka 2008 in preparation, Dimmelmeier et al. 2007ab, Ott et al. 2007]

 10^{-20} • >140 2D GR $f_{\rm c} = \left(\int_0^\infty \frac{\langle \hat{h}^2 \rangle}{S_h} f \, df\right) \left(\int_0^\infty \frac{\langle \hat{h}^2 \rangle}{S_h} df\right)^{-1} \quad \hat{h} = \int_{-\infty}^\infty e^{2\pi i f t} h \, dt$ models with $Y_{e}(\hat{T})$ parametrization. $h_{\rm c} = \left(3 \int_0^\infty \frac{S_{h\,\rm c}}{S_h} \langle \hat{h}^2 \rangle f \, df\right)^{1/2} \tag{4}$ 6 presupernova S modele Not highly discriminating EOS test Slo rota (=Robust mechanism probe) Sol mo diffe Merger waves: Similarly... rota Simple parameterized EOS adequate 2 fi [Lackey, Friedman, Owen, Read 2008 in prep] nuc •GW s 1000 multi-uegenerate. f_{c} [HZ] •Key parameters: 1) slow rotation, pressure-dominated rapid rotation, pressure-dominated, Precollapse central A. bounce, prompt convection rotation-influenced bounce 2) moderately-rapid rotation, pressure-4) single centrifugal bounce. Precollapse iron-core entropy. dominated bounce 17 D. Ott @ APS April 2008 Meeting

Method 3: Spindown

Method 3: Spindown

Spindown limit on mountains, r-modes

Spindown limits **Mountains**

<u>can</u> rule out long-lived "large" ellipticity <u>can't</u> rule out decaying "large" ellipticity (e.g., viscoelastic; annealing; ...) ...don't forget: mountain **distribution** (EOS != guarantee!)

Method 3: Spindown

Sensitive to ~ (few)x10⁻²

Close to parametric instability threshold

[Bondarescu et al 2008]

O'Shaughnessy and Owen, in preparation

And more!

Accreting NS:

• Why are spins not near breakup?

```
[Bildsten]
```

- R-modes? Mountains?
- Are modes excited by accretion and flares?

Bursty NS:

- Magnetar bursts excite internal modes? SGR1806-20 : observed oscillations
- NS "glitches"

3: How do stars evolve?

Complex

- Outline of (typical) evolution:
 - Evolve and expand
 - Mass transfer (perhaps)
 - Supernovae #1
 - Mass transfer (perhaps)
 - Supernovae #2

Note

- •Massive stars evolve faster
- •Most massive stars supernova, form BHs/NSs
- •Mass transfer changes evolutionary path of star

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Movie: John Rowe

Why a challenge?

Lots of unknown physics inputs

- "Supernova kicks"
 Pulsar tranverse velocities require
 <u>Observed</u> distribution used
- Wind mass lossMassive stars hard to observeSets mass of final BH

Recent observations : suggest preferred value Bulik et al 2008; Orosz et al

Many parameters (like this) change results by **x10** (each!)

Not one answer but many...

Distribution of results

Find subvolume to match obervations?

Computational challenge

- O(weeks/CPU) per model
 - Longer if more info needed (e.g., mass, spin distributions)
- Practical balance:
 - Explore (~ 7d) space
 - Know predictions of any model

: we estimate detection rates

O'Shaughnessy et al 2005,2007,2008

Best estimates for detection rates

How much will LIGO help?

Information extracted about rate depends on rate

Case 1: No detections: (eLIGO)

"Information" =p= prior probability of no detections

How much will LIGO help

Case 2: Most likely detection rate (aLIGO)

 $\mathbf{R} = \mathbf{27/yr} \quad : \quad \frac{dN}{dtdV} \simeq \frac{10^{-6}}{\mathrm{Mpc}^{3}\mathrm{vr}} + \ \mathsf{D}_{bns} \sim 169 \ \mathrm{Mpc} \ [\text{Shoemaker LSC 3-08}]$

$$\sigma_{before} \simeq 0.5$$

 $\sigma_{after} \simeq 1/\sqrt{27} \ln 10$

Better than relevant astrophysical uncertainties!

- Galaxy catalog
- Star formation uncertainties
- Inhomogeneous metallicities

Spin orientations of mergers (kicks)

(information extraction: **under development**)

What might we learn?: EXAMPLE

Parameter distributions

- Not all parameter combinations allowed Examples:
 - Kick strength: $v_1, v_2 \sim 300$ km/s
 - CE efficiency: $\alpha\lambda > 0.1$
 - Mass loss : $f_a < 0.9$

Lots of physics in correlations

<u>Example</u>: Reproducing Milky Way NS binaries

Conclusions

GW enable unique astrophysics

- Reveals the endpoint of the life of massive stars
 - How they get there
 - What they're like (NS, BH)
 - What happens when two collide
- Tells us about hard problems
 - Nuclear matter
 - Supernova (kicks via rates, waves, ...)

Theoretical challenges

Models already (GC)/will soon (others) lag observations

Challenge I : <u>more concrete predictions</u> relevant to <u>what observables are accessible</u> Challenge II: "Big picture" -- cross-correlate LIGO w/ other astro observables, models

It helps to have friends...

Outside information (triggers, etc) improves reach

Complement existing constraints

Ellipticity vs NS mass-radius constraints

Extragalactic young clusters ("infant mortality")

NS population: Mass spectrum, binarity, extreme masses

Short GRBs: rates, subpopulations (?), hosts,

4: Star formation in clusters (*)

Clusters are important...

- Much of SFR : Fall & Zhang
- Cluster mass distribution flat in log...
- Lots of mass formed in high-mass, high-density regions...

...but they don't stick around

- Infant mortality : lots go away
- Long term tidal disruption
 - ...very weak theory constraints
- What can happen?

What happens in dense clusters?

Point particle model

- Contraction and segregation, binary burning, core collapse Still finding surprises now!
 - Full Nbody slow for binaries (timescales)
 - Approximate codes just getting full few-body numerical collisions

Fregeau; Freitag; Portegies Zwart; McMillan; Sigurdsson; Hut; Heggie; Aarseth;...

+ Stellar evolution

- Supernovae and Density switch:
 - Runaway collisions -> IMBH?
 - BH segregated subcluster?

• Size changes and full evolution ...very early stage [Ivanova; PZ & "MUSE"; Fregeau...]

+ "Initial conditions" - gas dynamics, IMF, ...

...ideas being proposed...early...

[Gurkan; Fregeau; Freitag; ...]

suggest high rates

What processes can LIGO see? (*)

Stellar mass BHs from subcluster

- Runaway mergers?
 - Nope, GR kicks
- Ejected mergers?
 - Evaporating segregated cluster

• Parabolic encounters?

What processes can LIGO see? (*)

IMBH binaries

- Formation: Runaway collisions
- Drive close via stars -- merge quickly

IMBH-stellar mass captures [Mandel Brown Gair Miller]

- Optimistic: IMBH growth by mergers ~ few/cluster/Gyr
- aLIGO : 1/few yrs?

Binary mergers: Big picture

Constrain

References include

• O'Leary, O'Shaughnessy, Rasio PRD 76 061504 (2005)

O'Leary et al astro-ph/0508224

References include

• Fregeau et al astro-ph/0605732

References include

•Belczynski, Kalogera, Bulik 2002

•O'Shaughnessy et al. in prep

+ astro-ph/0610076; 0609465; 0504479

Binary mergers: Big picture

Constrain channel details: Different mass distributions

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

