Extending our reach: the next decade of GW detectors

Outline

LIGO

10¹

10²

Frequency [Hz]

10³

Strain and Gauge

LIGO

Transverse Traceless	Locally Lorentz
Induced strain	Induced acceleration
$h = \frac{\delta l}{l}$	$\frac{d^2x}{dt^2} = \frac{1}{2} \left(\ddot{A}_+ x \hat{x} + \ddot{A}_\times y \hat{y} \right)$
$A_{+}: \bigcirc \bigcirc$	

Virgo Cluster inspiral: h~10⁻²¹

GW in Space

"LISA promises to open a completely new window into the heart of the most energetic processes in the universe, with consequences fundamental to both physics and astronomy." -National Academy

GW Detector 0.01

LIGO

Waldman

Waldman April APS '08 **Modern IFOs** LIGO $SNR(\omega) \propto (P_0)^{-1/2}$ **Michelson** LLO 4km beamtube LHO Test Mass Isolator $\lambda/4 \lambda/2$ NPRO LASER LZH 35W MOPA

Seismic isolation

LIGO

Super Attenuator System

GEO:

Triple Pendulum Suspension

Outline

LIGO

10⁻¹⁷ F 10⁻¹⁸ **GW** detectors 10⁻¹⁹∟ Strain [Hz^{-1/2}] GEO, VIRGO, LIGO Future upgrades 10⁻²¹ 10⁻²² 10⁻²³

10¹

10³

10²

Frequency [Hz]

Worldwide network

Earth at Night More information available at: http://antwrp.gsfc.nasa.gov/apod/ap020811.html

LIGO

Astronomy Picture of the Day 2002 August 11 http://antwrp.gsfc.nasa.gov/apod/astropix.html

Waldman

GEO 600

Waldman April APS '08

Near Pisa, Italy 3 km power recycled Fabry-Perot Michelson

Super-attenuator seismic isolation

3 IFOs at 2 sites in Hanford, WA & Livingston, LA

Power recycled Fabry-Perot Michelson

LIGO performance

LIGO

13

Waldman April APS '08

NS/NS horizon

LIGO

S5 Science run

Noise Budget (2)

injection/response measurements of noise couplings to test mass displacement

Displacement

Waldman April APS '08

Outline

GW detectors GEO, VIRGO, LIGO Future upgrades

CLIO

Cryogenic Laser Interferometer Observatory

100m FP Michelson in Kamioka 20 K mirrors, SAS system

ugo CLIO 300K performance

Waldman

LCGT

•High frequency complements long detectors

LIGO

LASER

- Increased power to reach thermal noise at 10 1 kHz
- •Possibly use squeezed vacuum

GEO-HF

Squeezed vacuum

LIGO

Inject squeezed vacuum to reduce shot noise by ~4dB

Waldman

April APS '08

Planning for deployment at GEO Spring 2009

Advanced Virgo

LIGO

- Improved Super-attenuator mechanics, 6 DOF payload control, Monolithic suspensions
- Signal recycling, increased laser power, adaptive thermal compensation
- •Heavier mirrors, low thermal noise coatings

Waldman

Advanced LIGO

LIGO

Waldman April APS '08

aLIGO vs LIGO

LIGO

Waldman April APS '08

Active isolation

aLIGO sensitivity

aLIGO sensitivity

Jigo Heisenberg microscope

"Light enforced quantum uncertainty"

$\delta x \ge \sqrt{\frac{\hbar}{2M\omega}}$

Laser readout of the test mass position changes the test mass position Waldman

Quantum noise

LIGO

Waldman

Enhanced LIGO

- ~1 year science run at 2x S5 sensitivity starting 2009
- Prototype aLIGO technologies
 - DC readout

- Active seismic isolation
- High(er) power
- Low frequency noise
- ~10x increase in detection rate!

Conclusions

- h = 3 x 10^{-22} in a 100 Hz band, dx ~1.4 x 10^{-18} m
- Noise sources well understood for LIGO, Virgo, GEO
- 1 year data at design sensitivity, 70% single IFO duty factor
- Next generation technologies installed at the observatories 2008-2010
- Enhanced IFOs with ~2x range, ~10x rate in 2009
- CLIO, LCGT, GEO-HF, Advanced Virgo in development
- Advanced LIGO underway, first IFO 2012

GW Astronomy

Waldman

