

Effect of parameter drift on Parametric Instability Threshold

W. Kells LIGO Laboratory, Caltech

With acknowledgement of entire LIGO team for interferometer Optics development

New Parametric Instability issue ??

- Several studies to date (Phys Lett A305,111; A354,360) calculate the threshold, R({parameters})≥1, of instability growth.
 - » All treat the contributing parameters {**p**} as fixed in time.
- May ask: will true dynamic system, {p(t)} alter threshold such that R_{eff} < R(({p(t)})?
 - » Even slow drift may be suspect: $\tau_{PI} \sim \tau_m /(R-1) \sim 100-1000s$ in AdvLIGO for expected acoustic mode {m} natural ring down $\sim 2\pi Q_m / \omega_m$
 - » Narrow acoustic resonances δ_m = ω_m /Q_m allow very small drifts to slew many line widths in Δt << τ_m
 - » AdvLIGO cavity mirror ROC change of ~0.2% (via thermal effects), HTM *PI* coupling modes can shift resonance ω_1 by several widths (~ δ_1/π = 250 Hz)
- For Advanced Ligo {p}, R({p_{static}})≈1 for many acoustic {m}, so even small dilutions R_{eff}< R({p_{static}}) would be crucial.

LIGO Parameterization of R threshold

 Specific formulation: cavity field = sum_{i,j} over well defined transverse mode <u>Lorentzian</u> resonances

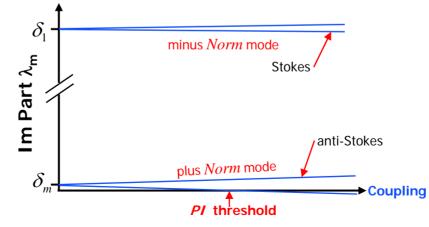
$$\begin{array}{c} Each\\ Isolated Acoustic\\ Mode "m" \end{array} R = \frac{4P_0Q_m}{mcL\omega_m^2} \left(\sum_i \frac{Q_{1i}\Lambda_{1i}}{1 + (\Delta\omega_{1i}/\delta_{1i})^2} - \sum_j \frac{Q_{1aj}\Lambda_{1aj}}{1 + (\Delta\omega_{1aj}/\delta_{1aj})^2} \right) \\ P_0 = cavity circulating power\\ Q_m, \omega_m = Acoustic mode Q, frequency\\ M = TM (mirror) mass\\ Q_{1j} = j^{th} cavity mode Surface overlap with m\\ \delta_{1j} = j^{th} cavity mode Lorentzian line width\\ \Delta\omega = \omega_0 - \omega_m - \omega_{Gouy} depends on detailed cavity geometry\\ \Delta\omega_a = \omega \partial + \omega_m - \omega_{Gouy} \end{array}$$

- Only "Stokes" excitations at $\omega_{1j} = \omega_0 \omega_m$ contribute to **R**>0
 - » Formula not apparently dependent on $\beta = \omega_{PI} \omega_m$ (no acoustic Lorentzian factor) ??
 - All cavity fields are expressed in stationary limit: acoustic source and cavity parameters cannot change (t)

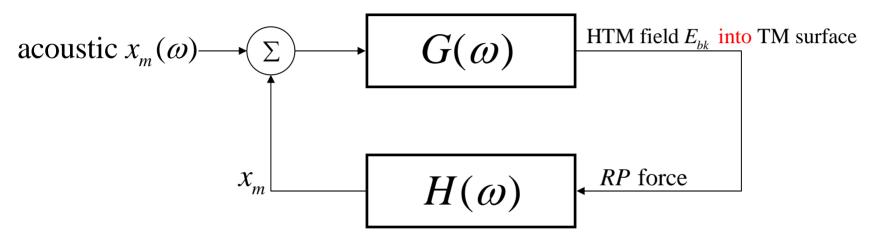
LIGO G080431-00-D

Nature of the PI "mode"

- Original concept (Phys. Lett A 287, 331& 299, 326) was eigenvalue, λ, solution to coupled, linearized 3 mode interaction equations.
 - » Normal modes of *coupled* acoustic + cavity SHOs
 - Coupling via 3^d mode, $E_0(\omega_0)$, but approximated as fixed parameter.
 - » Typical λ_m^{\pm} solutions correspond to two distinct normal modes (NOT Stokes, a-Stokes !)
 - » $Im[\lambda^{-}]<0$ for any physical coupling: always damped.
 - However this normal mode is ~ free cavity HTM, so not of interest.
 - » $Im[\lambda^+]<0$ in a-Stokes approximation. In Stokes $Im[\lambda^+]>0$ for sufficient coupling: unstable
 - » Thus only λ^+ mode of interest with Re[λ^+] = β shift w.r.t. ω_m .



 Linearized coupled SHOs work well ⇒ equivalent Feedback analysis:



- Split into two transfer functions:
 - » TM acoustic Amplitude \rightarrow excited Stokes/a-Stokes HTM cavity field: $G(\omega)$
 - » Cavity field \rightarrow Force on TM Surface (radiation pressure): **Const.**
 - » Force \rightarrow driven response of damped acoustic oscillator: $H(\omega)$

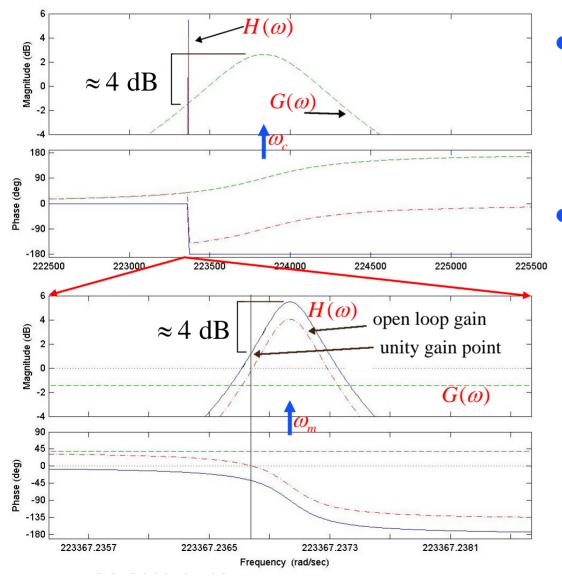
Feedback model

$$\begin{split} G(\boldsymbol{\omega}) &= i\alpha \left(\frac{-e^{-i\left(\frac{-2\omega L}{c} + \phi_{as}\right)}}{1 - r_{1}r_{2}e^{-i\left(\frac{-2\omega L}{c} + \phi_{as}\right)}} + \frac{e^{i\left(\frac{2\omega L}{c} + \phi_{s}\right)}}{1 - r_{1}r_{2}e^{i\left(\frac{2\omega L}{c} + \phi_{s}\right)}} \right) \xrightarrow{\boldsymbol{\omega}} \frac{\alpha}{-\omega + \omega_{c} - \frac{1 - r_{1}r_{2}}{r_{1}r_{2}}\frac{c}{2L}i} \\ \underbrace{Single \ pole \ \& \ Stokes \ Approx.} \\ H(\boldsymbol{\omega}) &= \frac{1}{-\omega^{2} + i\gamma\omega + \omega_{m}^{2}} \xrightarrow{\boldsymbol{\omega}} \frac{1}{-\omega + \omega_{m} + i\frac{\gamma}{2}} \left(\frac{1}{2\omega_{m}}\right) \end{split}$$

- $G(\omega)$ contains two terms: Stokes and anti-Stokes
 - » Stokes amplifies TM vibrations, anti-Stokes damps
 - » For well spaced cavity HTM resonances only one ~ coincides with $\omega_0 \pm \omega_m$
- Open loop *unity gain* ω_{UG} corresponds to $G(\omega_{UG}) H(\omega_{UG}) = \mathbf{R}$
 - » Net phase shift =0 means $G(\omega_{UG})$, $H(\omega_{UG})$ must be phase conjugates.
 - » Eigen-frequency coupled system occurs at equal magnitude decrements from the two transfer function peaks

LIGO

Feedback Bode analysis



- Open loop transfer function has unity gain, with 0 phase shift. Unstable!
- At freq. where open loop gain = 1, equal factor down peaks in both transfer functions

LSC/VIRGO joint meeting. 9/24/2008

Acoustic mode Energy gain/dissipation

- Rate of work, \dot{W} done on mirror by radiation pressure.
- Compared with natural dissipation rate, U_m/τ_m of acoustic {m}
 - » Since {m} strictly does no work on cavity field: pure *parametric* excitation.
- Instability identified by $\dot{W} \tau_m / U_m \ge 1$ (Kells, LIGO-T060296)
 - » Independent of specific eigen-frequency, $\beta \ll \delta$. Therefore assume β =0.
- Not dependent on specific cavity field formulation (modal)
 - » \dot{W} is real physical quantity: no phase condition, so β irrelevant
 - » Allows unambiguous meaning to *R*({*p*}) away from threshold (LIGO-T060207)
 - » If field Approx. as modes: <u>recover same coupled mode *R* formula</u>, thus verifying previous interpretation as sum over modal parts

Drift in parametric spectrum

- Coupled mode *PI* analysis to date: necessarily static system {*p*}
- Anticipate significant drift in most {p

- » Drift of \mathcal{O}_m due to $T_{ambient}$, beam heat, stress, thermal deformation.
 - Especially as cavity power is cycled to \mathbf{P}_{0max}
 - Changes to ω_{1i} due to cavity deformations (mirror radius, beam position)
 - Parametric induced change: $\beta,\,\tau_m$

• Expected instability
$$\tau_{PI} \equiv \frac{\tau_m}{R-1} = \frac{2}{\delta_m(R-1)} \approx \frac{2}{.001 \text{s}^{-1}(<10)} \approx 10^3 \text{ sec}$$

- Expected thermal ω_m drift <1Hz/hr so that τ_{PI} •drift rate / $\delta_m \gg 1$
 - » Static analysis assumes drift < δ_m , β
 - » How do we know *R*_{static} reasonably represents drifting interferometer?
- Analysis via the linear feedback model resolves this:
 - » Fundamental problem is linear near threshold \Rightarrow invoke Fourier decomposition!
 - » Drift described in terms of broader ($line \gg \delta_m$) spectrum acoustic excitation
 - » Interpret power spectrum as $\propto W$ [non-linear!] via Parseval theorem.

• Stokes cavity $E_{1j}(\omega_0 - \omega)$ components linear in acoustic {m} $x_m(\omega)$, using $x_m(\omega) \equiv \tilde{x}_m$ $\tilde{E}_{bk} \equiv E_{bk}(\omega_0 - \omega) = G(\omega)\tilde{x}_m \approx G(\omega_m)\tilde{x}_m$

• $\dot{W}(\omega)$ density acting on {m} thus closely in proportion to spectral density of $x_m(\omega)$: $\dot{W}(\omega)d\omega \propto E_{bk}\omega \tilde{x}_m^*d\omega = G(\omega)\tilde{x}_m\omega \tilde{x}_m^*d\omega$

• Then, by Parseval, mean rate of work done on {m}: $\int \dot{W}(\omega) d\omega \propto \int_{\Delta S} G(\omega) \left| \tilde{x}_{m} \right|^{2} \omega d\omega \approx G(\omega_{m}) \omega_{m} \int_{\Delta S} \left| \tilde{x}_{m} \right|^{2} d\omega \propto \left\langle U_{m}(t) \right\rangle_{\Delta t \sim \Delta S^{-1}}$ that is, independent of particular spectrum of $x_{m}(\omega)$

LIGO G080431-00-D

No PI dilution

- *Physical* assumption: that U_m(t) cannot change due to parameter drift
 » E.g. isolated TM energy is conserved (excepting slow dissipation).
- Condition for this independence: $\delta_m \sim .002 \text{ rad/s} \le \Delta S << \delta_{\text{Cav mode}} > 500 \text{ rad/s}$
 - » For example: LIGO TM "ambient" drift in $\omega_{\rm m}$ is < 1Hz/hr
 - » Faster dithering ω_m ? Strictly limited by smooth oscillator U_P ↔ U_K continuity any short time SHO phase jumps << up conversion scale.
- Conclusion: plausible TM drifts, even by $>>\delta_m$, can't dilute *PI*
- Another category: cavity parameter (Guoy phase) change effect on $H(\omega)$.
 - » $H(\omega)$ treated as a static filter..... to be modified in dynamic reality.
 - » Static Approx. holds if $\tau_{1j} \Delta \omega_{1j} < \pi$ which holds for $\Delta \omega_{1j} < \delta_{1j}$ (~2 π 85 Hz) during t~ $\tau_{1j} < 10$ ms.