

Status of RF Modulators for Enhanced and Advanced LIGO

Volker Quetschke for the LIGO-UF group University of Florida

Supported by NSF grant PHY-0555453

Optics WG, September 24, 2008

LIGO-G080483-00-R

- eLIGO modulator design
- eLIGO modulator commissioning
- aLIGO modulator prototype
- aLIGO parallel modulation scheme

LIGO-G080483-00-R

- LIGO is currently being upgraded to eLIGO
- Laser power is increased to 30 W
- iLIGO electro-optic modulators (EOMs) must be replaced
 - LiNbO3 modulators would suffer from severe thermal lensing or might even break
- eLIGO devices (techniques) serve as testbed for aLIGO

LIGO

Wedged RTP crystal (rubidium titanyl phosphate - RbTiOPO4)

- iLIGO lithium niobate (LiNb03) modulators are not satisfactory
 - Thermal lensing / Damage / Residual absorption.

• AR coatings (< 0.1%)

- Wedged crystal separates the polarizations and acts as a polarizer
 - This avoids cavity effects and reduces amplitude modulation

Polarization	Angle [degrees]
р	5.2
S	4.7

LIGO-G080483-00-R

LIGO Three Modulations / Single Crystal design

- One crystal with three separate pairs of electrodes. Crystal and electrodes are held by Boron-Nitride spacer (2nd generation, replaced Teflon).
- Electrode lengths:
 - 7 mm
 - 22 mm
 - 7 mm

LIGO Separate optic and electronic cases

 The crystal housing is separated from the resonant circuits to maintain maximum flexibility while the crystal remains in the optical setup.

LIGO

Resonant circuit

- Impedance matching circuit in separate housing.
- Pi-network resonant circuit with 50 Ω input impedance.
- Matched to eLIGO Frequencies:
 – 24.5 / 33.0 / 61.2 MHz

Thermal properties

The aLIGO laser prototype was used to measure the ۲ thermal lensing. Crystal at -150mm, in 160W beam at LZH

2.5

- Full Power = 160 W
- Beam Waist = 950 µm diameter at crystal
- 4x4x15 mm RTP crystal
- 2 diameter [mm] 1.5 – Thermal lenses: $f_{x} > 4 m$ f_{y} = much longer 0.5 200 400 600 800 compare with LiNbO3 (20 mm long): distance [mm] f_{thermal} ~ 3.3 m @ 10 W

No RTP x waist

No RTP y waist

With RTP x waist (corrected by 0.9*15mm)

With RTP y waist (corrected by 0.9*15mm)

LIGO-G080483-00-R

IGO

- Wedged geometry suppresses amplitude modulation. (No polarization rotation possible)
- Piezo effects in can lead to standing waves (AOM) and pointing (RF-pointing) at the modulation frequency
- Measured AM: $\Delta l/l < 10^{-6}$ at $\Omega_{mod} = 24.5$ MHz / m = 0.5

This requires very precise alignment of the beam on the PD, RF pointing is present!

LIGO eLIGO modulator commissioning

- Installed at LHO
 - drive electronics changed to output 24dBm
 - installed after PMC, before power control.
 EOM always sees maximum power (~28W)
 - Modulation indices
 - 24.5MHz: m=0.50 @ 12.0Vpp
 - 33.3MHz: m=0.094 @ 5.0Vpp
 - 61.2MHz: m=0.146 @ 8.6Vpp
 - MC visibility 98%
- Installation at LLO is scheduled for the week of 10/20/2008.

Status of aLIGO modulator

- Prototypes are ready.
- Same internal setup as eLIGO modulators, but only two electrode pairs: 31 mm / 7 mm
- High power testing at LZH is pending
- aLIGO modulator can be used for parallel modulation setup.

IGO

Parallel Modulation setup

LIGO Not required by latest LSC document, but kept as a fall-back solution

- Symmetric setup on ٩ invar breadboard
- Fast phase control ۲ with phase correcting EOM
- Modulation at 9 MHz ٩ and 45 MHz
- UGF > 50 kHz٩ previously realized, higher is possible
- High dynamic range 0 length control thermal/PZT (investigation pending)

Summary

- eLIGO modulators: ready and installed (or will be soon)
- aLIGO modulators prototypes are ready and about to be tested

LIGO

Supplementary material

RTP Thermal properties

Properties	Units	RTP	RTA	KTP	LiNb0 ₃
dn_x/dT	10 ⁻⁶ /K	-	-	11	5.4
$dn_{}/dT$	10 ⁻⁶ /K	2.79	5.66	13	5.4
dn_z/dT	10 ⁻⁶ /K	9.24	11.0	16	37.9
K _x	W/Km	3		2	5.6
K_{v}	W/Km	3		3	5.6
K _z	W/Km	3		3	5.6
α	cm ⁻¹	< 0.0005	< 0.005	< 0.005	< 0.05
Q_x	1/W	-	-	2.2	4.8
Q_{y}	1/W	0.047	0.94	2.2	4.8
Q_z	1/W	0.15	1.83	2.7	34

LIGO

Properties	Units/conditions	RTP	RTA	LiNbO ₃
Damage Threshold	MW/cm ² ,	>600	400	280
n_x	1064nm	1.742	1.811	2.23
n _v	1064nm	1.751	1.815	2.23
n_{r}	1064nm	1.820	1.890	2.16
Absorption coeff. α	cm ⁻¹ (1064 nm)	< 0.0005	< 0.005	< 0.005
r_{33}	pm/V	39.6	40.5	30.8
r_{23}	pm/V	17.1	17.5	8.6
r_{13}	pm/V	12.5	13.5	8.6
r_{42}	pm/V	?	?	28
r ₅₁	pm/V	?	?	28
r_{22}	pm/V			3.4
$n_{z}^{3}r_{33}$	pm/V	239	273	306
Dielectric const., ε_{7}	500 kHz, 22 °C	30	19	
Conductivity, σ_{z}	Ω^{-1} cm ⁻¹ , 10 MHz	~10-9	3x10 ⁻⁷	
Loss Tangent, d_{z}	500 kHz, 22 °C	1.18	-	

LIGO-G080483-00-R

LIGO