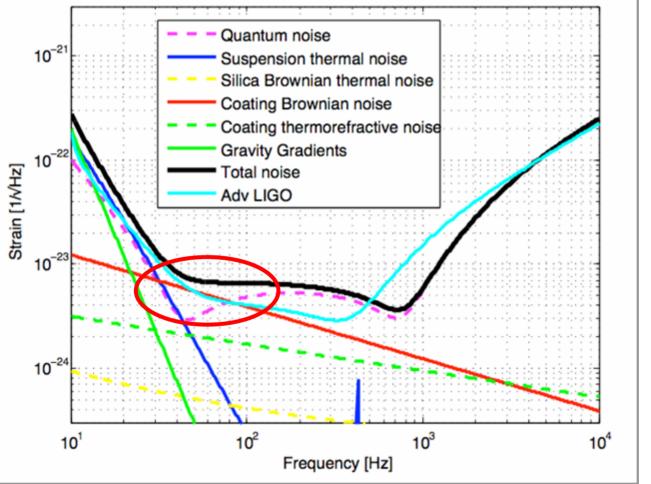
Higher order Laguerre-Gauss modes in future gravitational wave detectors

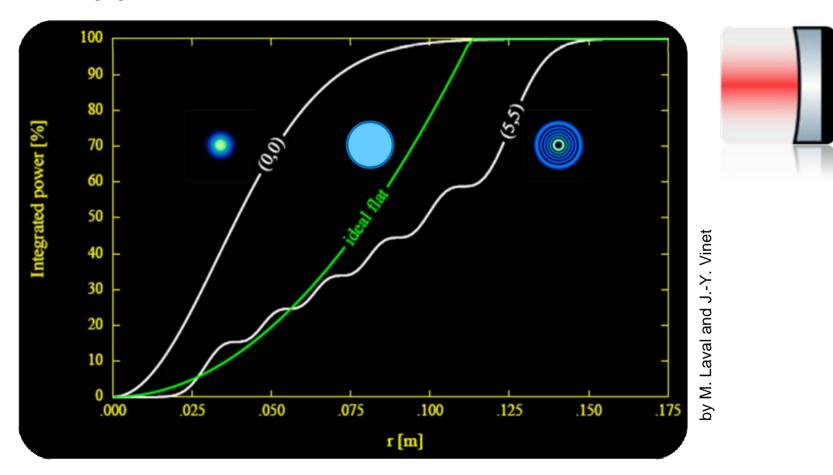
S. Chelkowski University of Birmingham

25.09.2008 LSC Meeting, Amsterdam



Overview

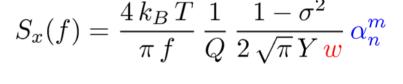
- Motivation for using Higher-Order Laguerre modes
- Summary of length and alignment sensing with higher order Laguerre-Gauss modes
- Arm cavity mirror radii of curvature trade-off analysis
 - Using advanced Virgo as an example
 - Use inspiral ranges as figure of merit
 - Three scenarios lead to four different comparisons of the fundamental LGoo and the proposed LG33 mode



Thermal noise in future GW detectors

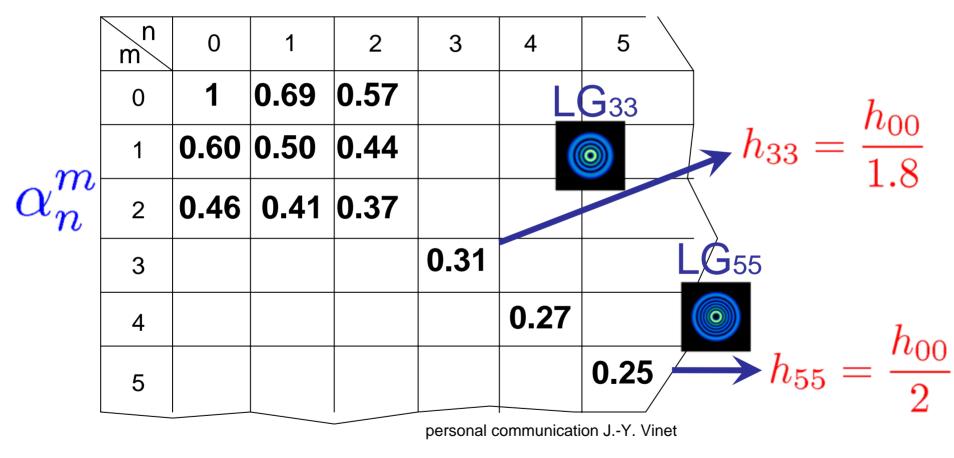
Integrated beam power for modes with 1ppm loss on a mirror with d = 35cm

Thermal noise of LG and Flat beams


HGoo mode: Bondu et al. Physics Letters A 246 (1998) 227

$$S_x(f) = \frac{4 \, k_B \, T}{\pi \, f} \, \frac{1}{Q} \, \frac{1 - \sigma^2}{2 \, \sqrt{\pi} \, Y \, w}$$

Bondu et al. Physics Letters A 246 (1998) 227



 $S_x(f) = \frac{4 \, k_B \, T}{\pi \, f} \, \frac{1}{Q} \, \frac{8 \, \left(1 - \sigma^2\right)}{3 \, \pi^2 \, Y \, \boldsymbol{b}}$

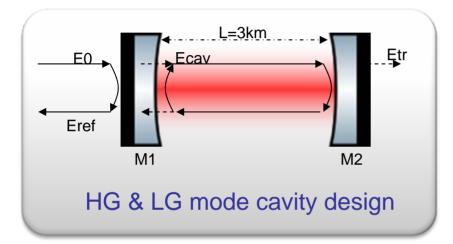
formulas valid for infinite media only

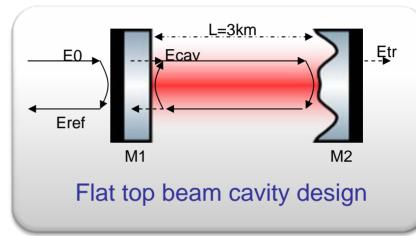
TN scaling factors of LGnm modes

numbers shown are for an infinite mirror size

LSC Meeting, Amsterdam 09/2008

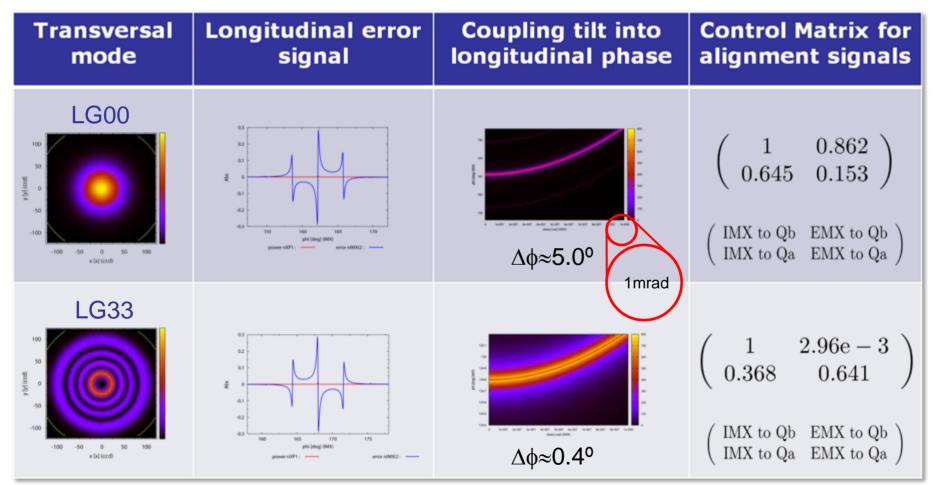
Expected thermal noise improvements


Reduction factor of thermal noise	LG00 / HG00	LG33	LG55	Mesa beam
Coating thermal noise	1	~2.2	~2.3	~1.5
Substrate thermal noise	1	~2.7	~2.7	~1.8
Thermo elastic noise	1	~0.6	~0.4	~1.8


All values given for beam sizes corresponding to 1ppm clipping losses

References: C. TN: personal communication J.-Y. Vinet S. TN: Mours *et al.* . CQG 23 (2006),5777 T. E. N: personal communication J.-Y. Vinet

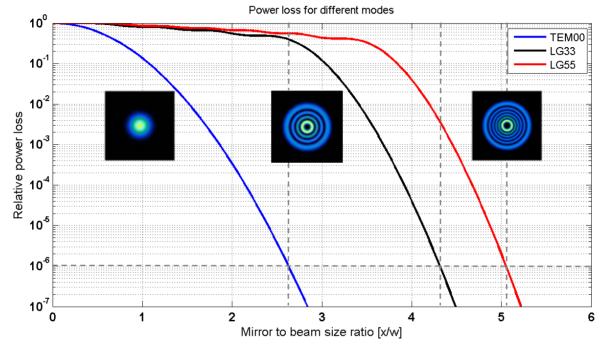
Comparison of LG and Flat beams



- Spherical phase fronts
- Compatible with current interferometers

- Beam shape and phase fronts change on propagation
- Mirror surfaces are more complex

Comparison of length and alignment signals for a single cavity



for more details see my Elba talk about higher order LG modes

PER AD ARDUA ALTA

Clipping loss comparison

Mode scaling factors	LGoo	LG33	LG55
Mirror size	1	1.64	1.92
Beam size	1	0.61	0.52

Arm cavity mirror radii of curvature trade-off analysis

Simulation parameters:

Bench version 4.1

UNIVERSITY^{OF} BIRMINGHAM

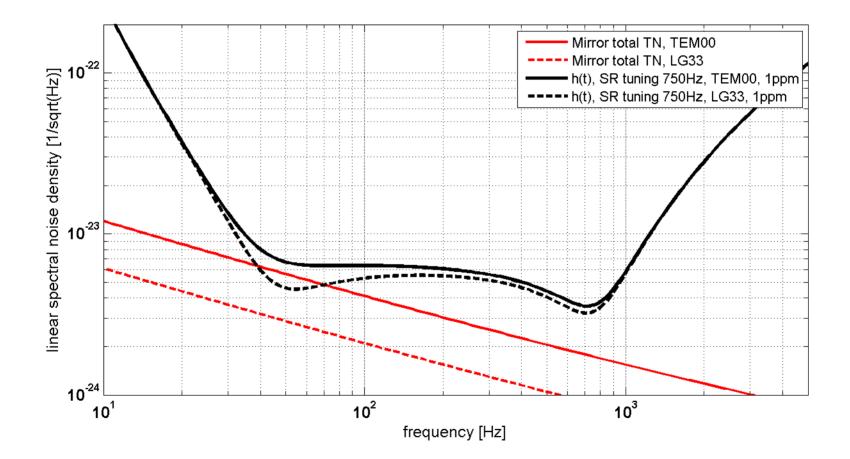

- Latest IFO model of Adv.Virgo
- Rescaled beam size for LG modes
 - Used thermal noise scaling factor by J-.Y. Vinet
- Thermo-elastic TN compensation included
- Coating radius 17cm according to Virgo note VIR-038A-08 (2008)

Figure of merit: Inspiral ranges

PER AD ARDUA ALTA

NIVFRS

Three Scenarios

- 1. We buy one a set of optimized mirrors for each mode configuration; same clipping losses
- 2. We buy mirrors which are compatible with both mode configurations; same radii of curvature
- 3. We buy mirrors optimized for the LG00 mode and use the TCS system to optimize them later for LG33 and vice versa

PER AD ARDUA ALTA

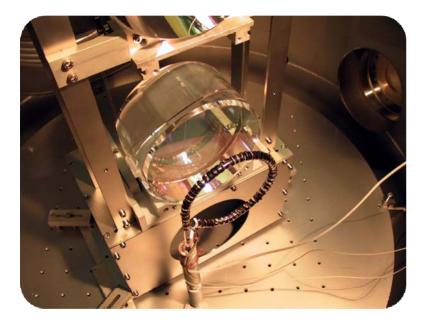
Scen Potoronoo oonfigure

Scen Reference configuration OSSES

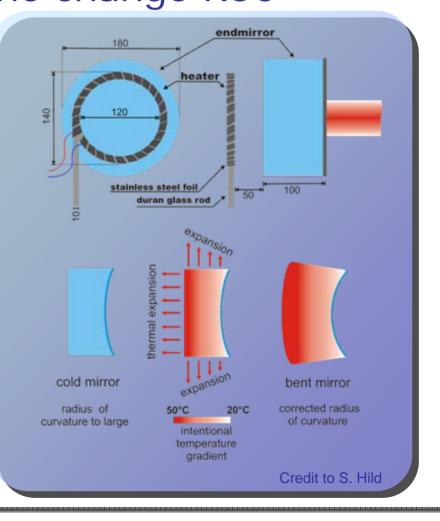
Transversal mode	LGoo baseline	LG33	LGoo	LG33
SR detuning [Hz]	750	750	300	300
Beam size w [cm]	6.47	3.94	6.47	3.94
Clipping loss [ppm]	1	1	1	1
Radius of curvature [m]	1522.8	1708.4	1522.8	1708.4
NS/NS inspiral range	126 17	% 148	130 25	% 163
BH/BH inspiral range	900 27	% 1143	580 23	% 715
NS/BH inspiral range	310 24	384	280 32	% 370

Problem: The mirrors are not compatible!

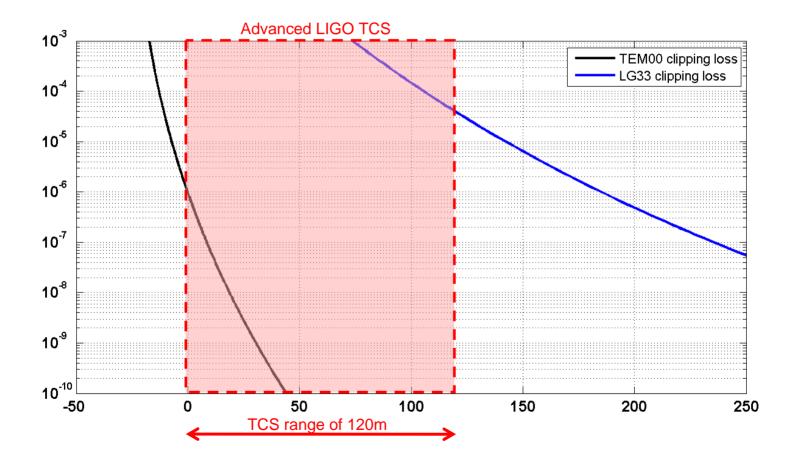
Scenario 2: Same radii of curvature


Transversal mode	LG00 baseline	LGoo	LG33	
SR detuning [Hz]	750	750	750	
Beam size w [cm]	6.47	4.22	4.22	
Clipping loss [ppm]	1	8e-9	30	
Radius of curvature [m]	Not a good option!			
NS/NS inspiral range	126 -21	1% 100 21	% 153	
BH/BH inspiral range	900 -24	4% 680 32	% 1187	
NS/BH inspiral range	310 -24	4% 235 28	% 398	

Problem:
Trade-off concerning clipping loss

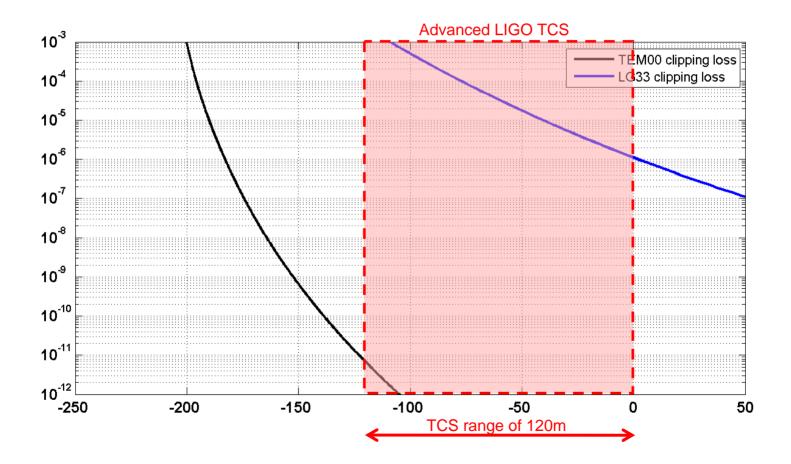

• LGoo configuration much worse than current baseline

Scenario 3: Use thermal compensation system to the change RoC


UNIVERSITYOF

LSC Meeting, Amsterdam 09/2008

Scenario 3a: Use thermal compensation system to the change RoC


Scenario 3a: Change RoC with TCS, optimisation for fundamental mode

Transversal mode	LG00 baseline		LGoo	LG33
SR detuning [Hz]	750		750	750
Beam size w [cm]	6.47		6.47	4.25
Clipping loss [ppm]	1		1	40.9
Radius of curvature [m]	¹ Looks promising!			
NS/NS inspiral range	126	0%	126 21	153
BH/BH inspiral range	900	0%	900 32	2% 1192
NS/BH inspiral range	310	0%	310 29	9% 400

Problem: Implementation of such TCS might be difficult

Scenario 3b: Use thermal compensation system to the change RoC

Scenario 3b: Change RoC with TCS, optimisation for LG33 mode

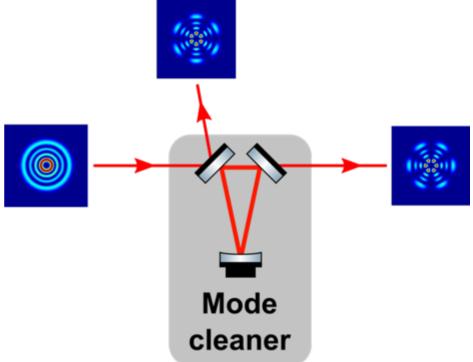
Transversal mode	LG00 baseline	LGoo	LG33	
SR detuning [Hz]	750	750	750	
Beam size w [cm]	6.47	4.71	4.25	
Clipping loss [ppm]	1	4.8e-6	1	
Radius of curvature [m]	Looks promising! ^{98.2}			
NS/NS inspiral range	126 -	15% 107	17% 148	
BH/BH inspiral range	900 -	18% 734	27% 1143	
NS/BH inspiral range	310 -	18% 254	24% 384	

Problem: Implementation of such TCS might be difficult

Conclusion

- LG modes reduce the thermal noise in the IFO
- LG modes compatible with current IFO designs
- Beam parameters are different
 - RoC have to be matched, or clipping loss are different
- Length and alignment signals of LG33 better than LG00 for the same mirror sizes
- Inspiral ranges of RoC compatible IFO configuration (Scenario two) are low for fundamental LGoo mode
- Best solution uses Thermal Compensation System to adapt RoC to the desired mode

Higher order Laguerre Gauss modes in triangular cavities


Behaviour of LG modes in triangular cavities

Two possible solutions for this problem

1.Do not use triangular cavities

UNIVERSITY^{OF} BIRMINGHAM

- 2.Use sinusoidal LG modes
 - Thermo-elastic noise of sinusoidal LG modes needs to be investigated!

For more details see talk by M. Barsuglia Virgo Biweekly Meeting 1/7/2008

Conclusion LG modes in triangular cavities

- Helical LG modes are not compatible with triangular cavities
 - Either use sinusoidal LG modes or use modecleaner cavities with an even number of mirrors
- Helical and sinusoidal LG modes have the same brownian thermal noise
- Thermo-elastic noise of sinusoidal LG modes unknown
 - should be investigated