R. Vogt November 18, 1992 ## LIGO GOALS Long Term: Gravitational Wave Observatory Operation Initial: Autonomous facility for detection of gravitational waves and **Source Survey** #### LIGO SENSORS Free mass, broad band, laser interferometric $$h = \frac{\triangle L}{L}$$ h = gravitational wave strain $\triangle L =$ net displacement of test masses L= separation of test masses (interferometer arm length) - Ultimate operation as part of global observatory - · Initial objectives can be achieved by LIGO alone ## **LIGO: PRINCIPAL FEATURES** 1) Two Sites $$\triangle L = h \cdot L$$ Signal Rate ≥ 3 events per year Noise Rate < 0.1 events per year · Operate several interferometers in coincidence mode 2) 4-km Arm Length For random-force noise (seismic, thermal, acoustic) **Displacement Sensitivity:** $$\triangle L_{\text{SIGNAL}} = h \cdot L > \triangle L_{\text{NOISE}}$$ $$h_T > \frac{\triangle L_{ ext{NOISE}}}{L}$$ Event Rate: Sig Signal Rate $$\propto rac{1}{h_T^3} \propto L^3$$ - · Economy dictates no tunneling, no large earth movement - · Scarcity of level, flat sites determines 4-km arm length choice - 3) 2-km Length Interferometers at One Site $$\underline{\triangle L} = h \cdot \underline{L}$$ amplitude discrimination for diagnostics and event verification LIGO facilities designed to ultimately accommodate 3 detectors **LIGO PRINCIPAL FEATURES: Cont'd** - 4) Beam Tube Clear Aperture: d = 1m - 6 Fabry-Perot IFs $(0.5 \mu m)$ - 1 Delay Line IF $(1.0 \mu m)$ - 5) Vacuum $$H_2 < 10^{-9} \, \mathrm{torr} \ N_2, H_2O < 10^{-10} \, \mathrm{torr}$$ Requirement need be achieved only gradually, allowing engineering trade-offs. - 6) Lasers - present: Argon-ion $\lambda = 0.5 \mu m$ 5W CW Single mode High beam quality $\epsilon \sim 10^{-4}$ future: Nd-YAG $(1\mu m)$ Frequency doubled 100W $\epsilon \sim 10^{-2}$ to 10^{-1} ## LIGO PRINCIPAL FEATURES: Cont'd - 7) Site Strategy - Consideration of noise and directional sensitivity - a) Global - i) Separation of sites - I > 300 km (noise correlation) - I < 4500 km (beam pattern overlap) - I = large (triangulation baseline) - ii) Orientation of connecting axis: - arbitrary for 2 sites - maximize area (volume) defined by 3 (4) sites - iii) Relative IF alignment: - co-aligned for maximum detection sensitivity (arm alignment coincides when projected on bisecting plane) - b) Local - level geometry (< m rad) (Earth's gravity vector: $\triangle \sim$ 0.6 m rad @ 4 km) ## LIGO PRINCIPAL FEATURES: Cont'd - 8) Single-Detector Start-Up to Three-Detector User Facility - Building Capacity: 6 (3) IFs - Vacuum System Capacity initial: 2 (1) IFs expandable to: final: 6 (3) IFs - 9) Continuous, Round-the-Clock Operation - 10) Life Expectancy: > 20 years - 11) Ancillary Instrumentation Monitor noise: acoustic noise seismic electromagnetic cosmic ray 12) Signal/Science Capability 10 Hz - 10 kHz polarization source direction Decode information carried in waveforms. | | Measurement
Capability | Science Capability | |-----------------------------|--|---| | L 2 U.S. Sites | $(ah_+ + bh_\times)$, arrival angle (w/r to line joining 2 sites) | 1. Physics Confirmation of existence of gravitational waves Propagation speed of gravitational waves (from periodic sources, or from burst sources if event also observed in electromagnetic band) Graviton spin (from periodic sources) Existence of Black Holes (if sufficient number of events) 2. Astrophysics: Classification of signals Statistics on types of sources (burst, periodic, semi-periodic) Distances and mass information for spiralling binaries Source location on cone (from "time of flight") Search for stochastic background | | II. 2 U.S. Sites + 1 abroad | $h_+, h_{\times}, \theta, \phi$ | All of I, with higher precision and greater detail, plus 1. Physics: Graviton spin (from polarization of waves) Test of general relativity in strong-gravity, high-speed regime (via waveforms of strong field sources) Measure geometry of spacetime around spinning black holes Study of non-linear gravity in black-hole collisions 2. Astrophysics: Source location (θ, φ) Waveforms give information on sources: e.g., core dynamics of supernovae, pulsar deformations, starquakes Sky survey of sources | | III. >3 Sites | $h_+, h_\times, \theta, \phi$ | All of II, but with higher precision and greater detail; more accurate source locations | # **SYMBOLS** ## **SYMBOLS** - Test Mass - @ Test Mass Chamber (Type1) - Test Mass Chamber (Type2) - ✓ Beam Splitter - **O Beam Splitter Chamber** - Laser & Input Optics - ☐ Output Optics - Laser Beam Site 1 Phase C Site 2 Phase C ## LIGO DIRECTIONAL SENSITIVITY $$\frac{\triangle L}{L} = F_{+}(\theta, \phi)h_{+}(t) + F_{\times}(\theta, \phi)h_{\times}(t)$$ $$F_{+} = \frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi$$ $$F_{\times} = \cos\theta \sin 2\phi$$ Circle 2 3' - 5' (U.S. - Europe) $\Delta\Omega = \frac{2c^2\Delta\tau_{12}\Delta\tau_{13}}{A\cos\theta}$ 1' - 2' (U.S. - Europe - Australia)