R. Vogt November 18, 1992

LIGO GOALS

Long Term: Gravitational Wave Observatory Operation

Initial: Autonomous facility for detection of gravitational waves and

Source Survey

LIGO SENSORS

Free mass, broad band, laser interferometric

$$h = \frac{\triangle L}{L}$$

h = gravitational wave strain

 $\triangle L =$ net displacement of test masses

L= separation of test masses (interferometer arm length)

- Ultimate operation as part of global observatory
- · Initial objectives can be achieved by LIGO alone

LIGO: PRINCIPAL FEATURES

1) Two Sites

$$\triangle L = h \cdot L$$

Signal Rate ≥ 3 events per year
Noise Rate < 0.1 events per year

· Operate several interferometers in coincidence mode

2) 4-km Arm Length

For random-force noise (seismic, thermal, acoustic)

Displacement Sensitivity:

$$\triangle L_{\text{SIGNAL}} = h \cdot L > \triangle L_{\text{NOISE}}$$

$$h_T > \frac{\triangle L_{ ext{NOISE}}}{L}$$

Event Rate: Sig

Signal Rate
$$\propto rac{1}{h_T^3} \propto L^3$$

- · Economy dictates no tunneling, no large earth movement
- · Scarcity of level, flat sites determines 4-km arm length choice
- 3) 2-km Length Interferometers at One Site

$$\underline{\triangle L} = h \cdot \underline{L}$$

amplitude discrimination for diagnostics and event verification

LIGO facilities designed to ultimately accommodate 3 detectors

LIGO PRINCIPAL FEATURES: Cont'd

- 4) Beam Tube Clear Aperture: d = 1m
 - 6 Fabry-Perot IFs $(0.5 \mu m)$
 - 1 Delay Line IF $(1.0 \mu m)$
- 5) Vacuum

$$H_2 < 10^{-9} \, \mathrm{torr} \ N_2, H_2O < 10^{-10} \, \mathrm{torr}$$

Requirement need be achieved only gradually, allowing engineering trade-offs.

- 6) Lasers
 - present: Argon-ion

 $\lambda = 0.5 \mu m$

5W CW

Single mode

High beam quality

 $\epsilon \sim 10^{-4}$

future: Nd-YAG $(1\mu m)$

Frequency doubled

100W

 $\epsilon \sim 10^{-2}$ to 10^{-1}

LIGO PRINCIPAL FEATURES: Cont'd

- 7) Site Strategy
 - Consideration of noise and directional sensitivity
 - a) Global
 - i) Separation of sites
 - I > 300 km (noise correlation)
 - I < 4500 km (beam pattern overlap)
 - I = large (triangulation baseline)
 - ii) Orientation of connecting axis:
 - arbitrary for 2 sites
 - maximize area (volume) defined by 3 (4) sites
 - iii) Relative IF alignment:
 - co-aligned for maximum detection sensitivity
 (arm alignment coincides when projected on bisecting plane)
 - b) Local
- level geometry (< m rad) (Earth's gravity vector: $\triangle \sim$ 0.6 m rad @ 4 km)

LIGO PRINCIPAL FEATURES: Cont'd

- 8) Single-Detector Start-Up to Three-Detector User Facility
 - Building Capacity: 6 (3) IFs
 - Vacuum System Capacity

initial: 2 (1) IFs expandable to: final: 6 (3) IFs

- 9) Continuous, Round-the-Clock Operation
- 10) Life Expectancy: > 20 years
- 11) Ancillary Instrumentation

Monitor noise: acoustic noise

seismic

electromagnetic

cosmic ray

12) Signal/Science Capability

10 Hz - 10 kHz polarization source direction

Decode information carried in waveforms.

	Measurement Capability	Science Capability
L 2 U.S. Sites	$(ah_+ + bh_\times)$, arrival angle (w/r to line joining 2 sites)	 1. Physics Confirmation of existence of gravitational waves Propagation speed of gravitational waves (from periodic sources, or from burst sources if event also observed in electromagnetic band) Graviton spin (from periodic sources) Existence of Black Holes (if sufficient number of events) 2. Astrophysics: Classification of signals Statistics on types of sources (burst, periodic, semi-periodic) Distances and mass information for spiralling binaries Source location on cone (from "time of flight") Search for stochastic background
II. 2 U.S. Sites + 1 abroad	$h_+, h_{\times}, \theta, \phi$	 All of I, with higher precision and greater detail, plus 1. Physics: Graviton spin (from polarization of waves) Test of general relativity in strong-gravity, high-speed regime (via waveforms of strong field sources) Measure geometry of spacetime around spinning black holes Study of non-linear gravity in black-hole collisions 2. Astrophysics: Source location (θ, φ) Waveforms give information on sources: e.g., core dynamics of supernovae, pulsar deformations, starquakes Sky survey of sources
III. >3 Sites	$h_+, h_\times, \theta, \phi$	All of II, but with higher precision and greater detail; more accurate source locations

SYMBOLS

SYMBOLS

- Test Mass
- @ Test Mass Chamber (Type1)
- Test Mass Chamber (Type2)
- ✓ Beam Splitter
- **O Beam Splitter Chamber**
- Laser & Input Optics
- ☐ Output Optics
- Laser Beam

Site 1 Phase C

Site 2 Phase C

LIGO DIRECTIONAL SENSITIVITY

$$\frac{\triangle L}{L} = F_{+}(\theta, \phi)h_{+}(t) + F_{\times}(\theta, \phi)h_{\times}(t)$$

$$F_{+} = \frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi$$
$$F_{\times} = \cos\theta \sin 2\phi$$

Circle

2

3' - 5' (U.S. - Europe)

 $\Delta\Omega = \frac{2c^2\Delta\tau_{12}\Delta\tau_{13}}{A\cos\theta}$

1' - 2'

(U.S. - Europe - Australia)