Change to Nd:YAG Lasers

Stan Whitcomb

9 October 1995

Process for Making Working Decision to Change Lasers

- Discussion of Issues and Questions at Science/ Integration Meeting in May
- Report on Technical Comparison / Status and Plans of Other Groups -- August
- Special Meeting of Science Team to Discuss Report and Options for Change -- August
- Working Decision Announced by Barish --September
- Formal Action by Change Control Board to be Taken When Plans Advance Enough to Fully Assess Technical, Cost, and Schedule Impact

Reasons for Changing Lasers

- Growing Maturity of Diode-Pumped Nd:YAG
 - >>High Volume OEM Products with Power and Reliability Required for Initial LIGO Detectors
 - >> Demonstrations of Performance at Stanford, VIRGO, GEO
- Expectation of Future Laser Improvements Gives Path for Enhanced Detectors
 - >>100 W Class Single Frequency Lasers Under Development
 - >>Kilowatt Diode-Pumped Lasers Demonstrated
- Benefits Due to Longer Wavelength
 - >>Higher Frequency Modulators
 - >>Higher Power Photodetectors
 - >>Lower Scatter, Lower Contamination on Optics (?)
- Benefits of Sharing Technology with Other GW Groups

Laser Configuration for Initial Detectors

- Requires 10 W IR Power to Replace 5 W Argon Laser -- Available in Commercial Products
- Injection-Locked Oscillator

- +Slave Reproduces Properties Of Master Oscillator
- +Demonstrated with Nd:YAG at Stanford, VIRGO, GEO
- +No Lossy Tuning Elements In Slave
- -Requires One (Simple) Additional Locking Circuit
- Master Oscillator/Power Amplifier
 - +No Locking Required
 - -Possible Loss of Efficiency

Master Oscillator

- Both Configurations Allow Near-Term Tests at ~1 W Level with Stabilized Master Oscillator
- Master Oscillator Performance
 - >>Frequency Noise <200 Hz/Hz^{-1/2} at 100 Hz (100x Better than Argon Laser
 - >>Intensity Noise <10⁻⁵ 1/Hz^{-1/2} above 100 Hz
 - >>Shot-noise-limited above ~10 MHz
- Options for Master Oscillator
 - >>Lightwave Electronics (700 mW, Single-Frequency, Integrated Frequency Control, Built-in Relaxation Oscillation Suppression)
 - >>Laser Zentrum Hannover (up to 1W, Single-Frequency, Integrated Frequency Control, Built-in Relaxation Oscillation Suppression)

Impact on R&D Activities

- Plans Still Preliminary Due to Procurement Uncertainties
- Phase Noise Interferometer
 - >>Most Stringent Test of Laser Properties (Frequency, Intensity Stability)
 - >>Highest Priority for 10 W Laser When Available
 - >>Convert to Near-IR as Soon as Optics and MO Laser Are Available (4-6 Months?)
 - >>Will Proceed with Green Recycling in Interim
- 40 m Interferometer
 - >>Most Near-term Tasks Independent of Wavelength (New Test Mass Suspension, Recycling Controls Test)
 - >>Will Defer Installation of 12m Suspended Mode Cleaner (To Be Used for Nd:YAG Laser Tests)
 - >> Procure Optics and MO Laser for Conversion in 1996

Impact on Detector Design and Plans

Laser Development

- >>Work with Industry, Other GW Groups to Develop Laser
- >> Repeat Stabilization Design and Testing
- >> Gain Immediate Experience with Stabilization of MO

Impact on Other Detector Subsystems

- >>Interferometer Configuration: Modulation Frequencies
- >>Optical Layout: Increased Beam Clearances
- >>Optics: Substrates, Coating Uniformity, Metrology
- >> Suspension Design: Optics Size
- >>I/O Optics: Beam Sizes, Telescopes
- >>Photodetectors, Modulators

Minimal Impact on Facilities Design

Beam Tube

- >>Diameter Already Sized to Accommodate Multiple IR Beams
- >>Baffle Performance Required for Visible and Near-IR, Independent of Initial Interferometer Choice
- Vacuum Equipment
 - >> No Major Impact
- Buildings
 - >>Ultimate Power Requirements for Advanced Solid-State Lasers (100+ W Class) ~ Same as Initial Argon Lasers
 - >>Can Defer Installation of Chiller Plant Module, Some Cooling Distribution Lines

