Gravitational Waves

Barry Barish Caltech

Yale University December 8, 1995

LIGO-G950103-00-M

Gravitational vs E.M. Waves

EMWAVES		GRAV. WAVES
Nature	Oscillation of EM Fields Propagating Through Spacetime	Oscillations of the "fabric" of spacetime
Emission Mechanism	Incoherent superposition of waves from molecules, atoms, particles	Coherent emission by bulk motion of energy
Interaction with	Strong absorption and Scattering	Essentially None!
Frequency Band	f > 107Hz	f < 104Hz

- Most gravitational sources not seen as electromagnetic (and vice versa)
- Potential for great surprises
- Uncertainty in strengths of waves

Timed to ~50 µsec

Since discovery, observed period gradually speed up

- 10 sec in 15 years
 - growing quadratically in time

Due to loss of orbital energy, from emission of gravitational waves

Neutron Star Binary Coalescence

Method	Our Calaxy	Distance for 3/yr
Progenitor Death Rate	~1i //1000 yr	130 M.L.yr
Binary Pulsar Searches and Discoveries	~1)/10 ^{5±1} yr	600 M.L.yr.
Ultra-conservtive Limit from Binary Pulsar Searches	~1/10 ⁷ yr	3000 M.L.yr

International Effort -Gravitational Waves

- □ Techniques
 - ⇒ Resonant Bar Detectors
 - narrow band
 - ⇒ Large Scale Interferometers
 - broad band
- International Interferometer Effort
 - \Rightarrow U.S. -- LIGO (Two Sites)
 - Caltech & MIT (Wash and Louisiana)
 - ⇒ Europe -- VIRGO (One Site)
 - French and Italian (near Pisa)
 - ⇒ Smaller efforts
 - Germany, Japan, Australia
- □ Time Scale
 - ⇒ Approximately year 2000

LIGO Scientific Mission

Direct Detection of Gravitational Waves

> Neutron Binary Coalescence (Last 15 minutes of Hulse/Taylor in 100 Million Years)

 ⇒ Test General Relativity in Strong Field and High Velocity Limit
 ⇒ Measure Polarization and Propagation Speed

4/30/95

WAVEFORMS FROM
BINARY INSPIRAL
(Very "clean"; depend only on
MI, M2, ŠI, ŠL, Y, orbital elements)
WAVEFORM
DEPENDENCE ON & FOR I = 90°.
(expect 2 = 0)

$$h_{+}$$

 h_{+}
or
 h_{+}
 n_{\times}
 $MIDA cycles$
 $in Lido Band$
 $df \propto (M_{1}M_{2})^{C} f^{11/3} + (relativistic corrections
 $df \propto (M_{1}M_{2})^{C} f^{11/3} + 2^{2/3}$
Amplitude $\propto \frac{M_{1}M_{2}}{(M_{1}M_{2})^{C}} f^{12/3}$
 h_{+}
 $Max See S Spins$
 $Amp (h_{2}) = \frac{2 \cos i}{1 + \cos^{2} i}$
 $Max See S Spins$
 $Amp (h_{2}) = \frac{1}{2} Cos i$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$
 $Max See S Spins$
 $Amp (h_{2}) = \frac{1}{2} Cos i$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$
 $Amp (h_{2}) = \frac{1}{2} Cos i$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$
 $Amp (h_{2}) = \frac{1}{2} Cos i$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$
 $Amp (h_{2}) = \frac{1}{1 + \cos^{2} i}$$

.

LIGO Long Range Goals

- "New Tool" to Explore the Universe
 - ⇒ Final Coalescence of Binary Systems
 - Neutron Star/Neutron Star
 - Design Benchmark: last 15 min;

20,000 cycles 600MLyr

- Black-hole/Black-hole or /Neutron Star
- ⇒ Supernovae
 - Axisymmetric in our galaxy
 - Non-axisymmetric ~300MLyr
- ⇒ Early Universe
 - Vibrating Cosmic Strings
 - Vacuum Phase Transitions
 - Vacuum Fluctuations from Planck Era
- ⇒ The Unknown

Gravitational Wave Strength

Strain Sensitivity

$$h \approx \frac{G(E_{kin}^{ns} / c^2)}{r} \frac{1}{c^2}.$$

for
$$E_{kin}^{ns} / c^2 \sim M_{\Theta}$$

 $h \sim 10^{-20}$ for Virgo Cluster of Galaxies
 $h \sim 10^{-23}$ at Hubble Distance

LIGO Goal:
$$h \sim 10^{-22}$$

Detector $\Delta L = hL$
 $L = 4km \implies \Delta L = 10^{-16}cm$

This leads to Stringent Specifications:

Vacuum Seismic and Acoustic Isolation Test Mass Suspensions Optics

etc.

J

SCHEMATIC INTERFEROMETRIC DETECTOR

1

.

Figure 2.7 The sensitivity, as a function of direction, of an interferometric gravitational wave detector to unpolarized gravitational waves. The interferometer arms are oriented along the x and y axes.

Forces Exerted by a Gravitational Wave

(4 km) (300-30,000km)

Then: Quadrupolar Lines of Force

4/30/95

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

LIGO

- □ National Science Foundation
- □ Construction Project (1994-1999)
 - \Rightarrow Facilities and Initial Detector
- □ Commission Facility (1999-2001)
 - ⇒ Implement Initial Detectors
 - h ~ 10⁻²⁰ Initial Search in 2000
 - $h \sim 10^{-21}$ Sensitivity by end 2001
- □ Full Operations (2002 + ...)
 - ⇒ Operate/Enhance Initial Detector
 - data collaboration with VIRGO
 - incorporate outside Users
 - ⇒ Advanced Detectors
 - Syracuse, Colorado, Stanford, etc
 - Caltech efforts (LIGO, Drever, Kimble..)

LIGO Project

Detector

- » Detection Strategy
- » Interferometers

• R&D

- » Noise Sources and Sensitivity
- » Demonstration Experiments

Major Facilities

- » Beam Tube
- » Vacuum Systems
- » Civil Construction

Status and Plans

LIGC

Gravitational Wave Detection Strategy

Description of LIGO

- Two Sites Widely Separated
- Hanford, Washington
 - 4km and 2km Interferometers
- Livingston, Louisiana
 - 4 km Interferometer
- Expansion for Advanced Detectors

Hanford, Washington

- Located on U.S. Dept. of Energy Reservation
- Treeless, Semi-arid Desert
- Approx. 25 km from Richland (Metropolitan Pop. 140,000)

Livingston, Louisiana

- Located in Forested Rural Area
 - Approx. 50 km from Baton Rouge (Pop. 450,000)

Detectors

□ Approach and Characteristics

- ⇒ Employ Demonstrated Techniques
 - Required R&D has been defined
 - 40m, 5m, Optics Experiments, etc
- ⇒ Precision Engineering
 - Design Freeze (1997)
- ⇒ Systems Engineering/Integration
 - Interfaces, flexibility
- ⇒ Advanced Control/Data System
- Status and Plans
 - ⇒ Design/Performance for Detector is Consistent with the Design Goals
 - Optimization of the Design
 - Define Responsibilities
 - Advanced Options: seismic isolation, suspension, laser ???

Noise Budget For First LIGO Detectors

T 5 Watt Laser

:

÷

- · Minnar Losses 50 ppm
- ... Recycling Factor of 30
- . 10 kg Test Masses
- Suspension Q=107

, , , , , , , , , , , , , , , , , , ,		
Strain' Sensitivity.	10 ⁻²¹	
Displacement Sensitivity	4 x 10 ⁻¹⁸ m	
Fabry-Perot Arm Length	4000 <i>m</i>	
Vacuum Level	< 10 ⁻⁶ torr	
Laser Wavelength	514.5 nm	
Optical Power at Laser Output	5 W	
Optical Power at Interferometer Input	2 W	
Power Recycling Factor	30	
Input Mirror Properties	Flat, Reflectivity = 0.97	
End Mirror Properties	6-km Curvature, Reflectivity > 0.9999	
Arm Cavity Optical Loss	≤ 3%	
Light Storage Time in Arms	1 <i>ms</i>	
Test Masses	Fused Silica, 11 kg	
Mirror Diameter	25 cm	
Test Mass Period Pendulum	1 sec	
Seismic Isolation System	Passive, 4 stage	
Seismic Isolation System Horizontal Attenuation	≥ 10-7 (100 <i>Hz</i>)	
Maximum Background Pulse Rate	1 per minute	

Table 1-1. Initial interferometer specifications

R&D Program

□ Overview

- ⇒ Demonstration Experiments
 - Technical: Suspensions; Optics, Servos, ...
 - Sensitivity: Displacement, Phase Noise
 - ⇒ Priorities for Detector Design Freeze
 - ⇒ Operations: Reliability, Stability
 - ⇒ Develop Advanced Techniques
 - Active Seismic Isolation
- □ Progress and Plans
 ⇒ Optics, Test masses, Mirrors, etc
 ⇒ 40m Displacement Results

Reaching Design Sensitivity

□ Technical

- \Rightarrow R&D Improvements
- ⇒ Engineering Design Improvements
- \Rightarrow Systems Engineering/Integration

□ Site Specific Factors

- \Rightarrow Length 4 km (factor of 100)
- ⇒ Environmental Factors (e.g., Seismic)

□ Long Term

- ⇒ Reliability/Stability
- ⇒ Flexibility Detector Improvements
- ⇒ Allow for Future New Detectors

7 B

Hanford Corner Station SW Arm Axis, Morning Traffic December 13,1994 (Preliminary Data)

7 C

Suspension Thermal Noise

Observation of Thermal Noise in Violin Modes of 40-m Test Mass Suspensions

Suspension Thermal Noise For LIGO Interferometers

- Projected Thermal Noise for LIGO Interferometers
 - Model Suspension System Using Frequency
 Independent Loss Function
 - Use Current 40-m Suspension Design (Standoff on Test Mass and Clamps at Suspension Point)

LIGO

Phase Noise Demonstration

- Goal is to Develop and Demonstrate Technology for Shot-Noise Limited Phase Measurements at Initial LIGO Interferometer Power Levels
 - Requires Development and Testing of Modulators and Photodetectors.
- Build Up 5–m Interferometer in Stages toward Full Recombined, Recycled Operation
 - Begin with Simple Michelson Interferometer Using LIGO Readout Scheme (P_{eff} ~ 1 W)
 - Add Recycling Mirror ($P_{eff} \sim 15 \text{ W}$)

Reconfigure with Input Mode Cleaner (P_{eff} ~ 70 W)

- Achieving Shot-Noise Limited Phase Sensitivity Requires Understanding and Control of All Other Optical Sources of Noise
 - Laser Noise
 - Photodiode Uniformity
 - Modulator-Induced Noise
 - Scattered Light

LIGO Requirement Current 40-m Interferometer MPQ Garching

 $10^{-10} \text{ rad}/\sqrt{\text{Hz}}$ $10^{-8} \text{ rad}/\sqrt{\text{Hz}}$ $10^{-9} \text{ rad}/\sqrt{\text{Hz}}$

Optical Configuration Investigations

- Must Control at Least Four Critical Lengths
 - Need to Specify Placement of Pick-offs, Photodetectors, and Modulators to Extract Required Control Signals
- In 1991, Started Efforts to Build and Test Two Possible Schemes in Tabletop Experiments For Comparison with Model Predictions of Performance
 - Test Signal Sizes, Servoloop Stability
 - Look for Gaps in Models
 - Not Practical to Test Noise Performance

LIGO Project

□ Major Facilities

⇒ Beam Tube

⇒ Vacuum Systems

⇒ Civil Construction

DR&D

Detector

⇒ Interferometers

⇒ Control and Data Systems

Project Management

Untitled - 1

Beam Tube

ر.

Beam Tube

□ Characteristics
 ⇒ Arm Lengths - 4km
 ⇒ Tube Diameter - 4 ft
 ⇒ Initial Detector

 10⁻⁶ torr Hydrogen; 10⁻⁷ torr Water
 ⇒ Advanced Detectors
 10⁻⁹ torr Hydrogen; 10⁻¹⁰ torr Water
 ⇒ Quality Control

 (materials, welding, cleaning, etc)

Status and Plans

- ⇒ Design Contract was with CBI
 - Final Design Report Accepted (6/94)
- ⇒ Qualification Test
 - 130 ft Section success (4/95)
- ⇒ Contract Options

4/30/95

.

÷

ł

i

FIGURE1.1.2 #4 BAFFLE SCHEMATIC

-

Beam Tube Enclosure

Vacuum Equipment

□ Characteristics

 \Rightarrow Enormous Volume (~20,000 m³)

- ⇒ Mostly Standard Vac. Equipment
 - 1st stage roughing Atm -> 0.1 torr
 - 2nd stage roughing 0.1 torr ->10⁻⁶ torr
 - Steady State Ion/getter pumps.
- ⇒ Large Gate Valves (4ft diam)
 - access and flexibility

⇒ Controls and Monitoring

Status and Plans

- ⇒ Specifications Defined
 - Science Review Complete Aug '95
- \Rightarrow RFP for Design and Manufacturing
 - CBI and PSI awarded design contracts
 - Down-select 6/95

FIG. 3 INTERNAL ACCESS

-Jone 9-2-92

Civil Construction

- □ Characteristics
 - ⇒ Structures, Foundation, Roads, etc
 - Large and Clean Laboratory Bldgs
 - Beam Enclosures
 - Office/Lab Space
 - ⇒ Requirements
 - Seismic Stability, Noise Sources, etc
 - Cleanliness
- Status and Plans
 - ⇒ Both Sites Acquired
 - Grading Wash; Clearing in Lousiana
 - ⇒ Design/Const. Management
 - Awarded to Parsons (Nov 95)
 - ⇒ Conceptual Design -
 - 90% A&E received 4/95
 - Trade Studies; Value Engineering

LIGO

LIVINGSTON PARISH

LOUISIANA

AERIAL PHOTO BY: GULF COAST AERIAL MAPPING FLOWN: AUGUST 25, 1995 ALTITUDE: 12,000 FEET

la

Project Status and Plans

- □ Ready for Construction Phase ⇒ Acquisition Plans; Designs; etc
 - ☐ Construction Project ⇒ Complete in 1999
 - □ Operations
 - \Rightarrow Begins as Construction is
 - Completed
 - ⇒ Operational for Science during 2000 ⇒ Design Goal by end of 2001

LIGO Detectors R&D Program

Sensitivity

- » main features of 40 m spectrum understood
- » monolithic test masses improve sensitivity
- Demonstration Experiments
 - » optical recombination demonstrated on 40 m
 - » acquisition locking with LIGO controls
 - » MIT phase noise experiments underway
- Pre- [detector design freeze]
 - Program testing directed at tasks that could effect design over the next two years
- Post- [detector design freeze]
 - Program directed at improved sensitivity;
 experience running an interferometer facility

Where Do We Stand?

(Fundamental Noise Sources)

- Seismic Noise
 - Passive Seismic Isolation Stack Understood
 - Stacks with Softer Elastomer in Preparation
 - Significant Reduction in Seismic Background at Remote Sites
 - Projected to Meet Initial LIGO Goal
- Thermal Noise
 - Improvements in Quanitative Understanding
 - Suspension Requirements Relaxed, Internal Mode Requirements Tightened
 - Current Suspension Design Projected to Meet LIGO Goal
- Shot Noise
 - LIGO Goal 10× Better than Best Demonstrated
 - Requires Characterization and Integration Of Different Electro-Optical Components and Subsystems (Photodetectors, Modulators, Laser Stabilization, ...)
 - High Power Shot Noise Experiment Underway at MIT

Improvement Toward Advanced Interferometers

Initial Interferometer

Advanced Interferometer

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

Conclusions

- LIGO Construction is well Underway
- Direct Detection of
 Gravitational Waves Appears
 Realistic within 10 years
- Ultimate Sensitivities
 Capable of Opening a New
 Field of Observational
 Astronomy with Gravitational
 Waves is the Long Term
 Goal.

