
Conceptual Design Part 1: Control System Design

Lisa Sievers

4/23/96

- Actuate only the test masses (design driven by SUS)
- Sensing as shown in figure

Alternative Configurations

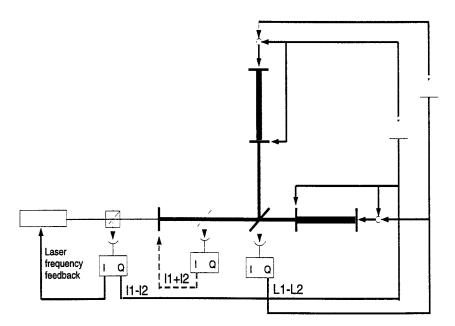
- Actuation (baseline is the 4 test masses)
 - >> End test masses, beamsplitter, and recycling mirror
 - Minimizes number of signal paths
 - >> In-board test masses, beamsplitter, and recycling mirror
 - High bandwidth signals would not be transmitted over 4 km

Sensing

- >> I1+I2 sensed with non-resonant sidebands
 - Eliminates set of beam reducer optics in beam splitter chamber
- >> I1-I2 sensed at recycling cavity pick-off
 - Loop more robust to changes in the losses of the cavity mirrors

$$\begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} \approx \begin{bmatrix} a_1 \ \varepsilon_1 \ 0 \ 0 \\ \varepsilon_2 \ a_2 \ 0 \ 0 \\ 0 \ 0 \ a_3 \ \varepsilon_3 \\ 0 \ 0 \ \varepsilon_4 \ a_4 \end{bmatrix} \begin{bmatrix} L_1 + L_2 \\ l_1 + l_2 \\ L_1 - L_2 \\ l_1 - l_2 \end{bmatrix}$$

• V1, V3, and V4 loops are fairly uncoupled: $\epsilon_n = 0.01 = 0.001$


$$\frac{c_n}{a_n} \sim 0.01 - 0.001$$

• V2 loop has large L_1+L_2 and small I_1+I_2 piece:

$$\frac{\varepsilon_2}{a_2} \gg 1$$

 Loop gain of (L₁+L₂) loop must be > than (I₁+I₂) loop by at least ε₂/a₂ to provide adequate decoupling

• Low frequency design driver (<10 Hz):

>>Reduction of RMS motion (mainly at microseismic peak)

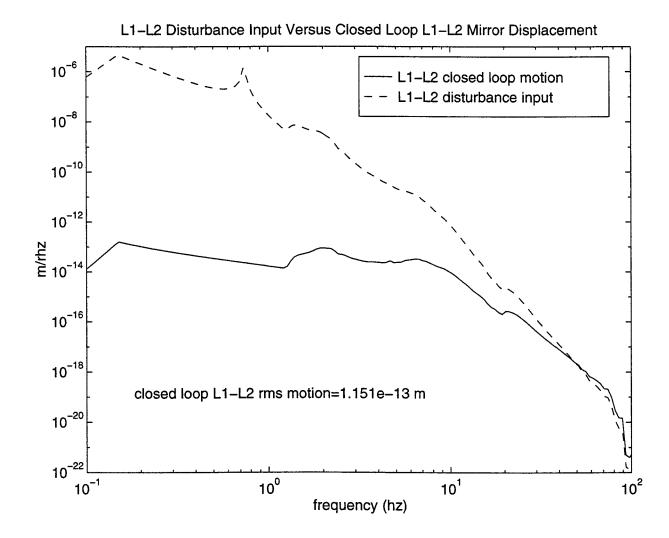
>>Loop gain ratio requirement of (L1+L2) and (I1+I2) loops

Mid-frequency design driver (10<f<100 Hz)

>>Shot noise feedthrough of I₁-I₂ loop into gravity wave band
>Loop gain ratio requirement of (L1+L2) and (I1+I2) loops

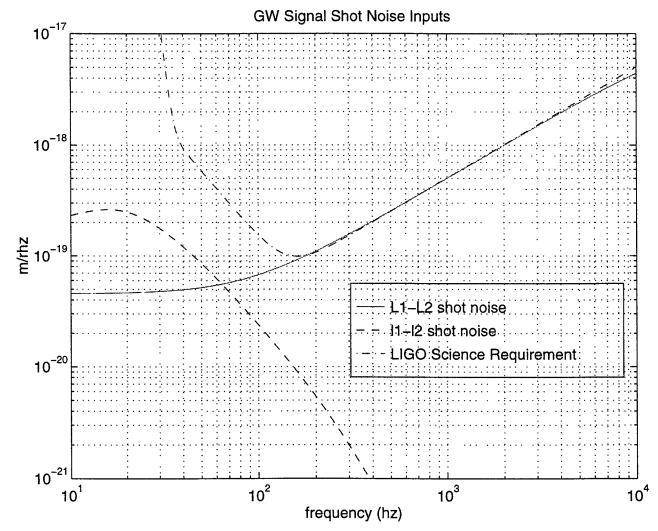
• High frequency design driver (f>100 Hz)

>> loop gain attenuation so test mass resonances don't ring>> frequency noise suppression

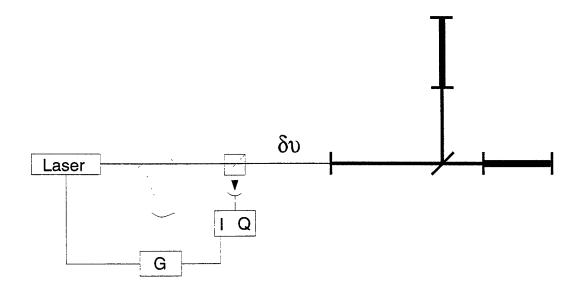


Loop Gains and RMS Motion

	Laser loop	$l_1 + l_2 \ loop$	L_1 - L_2 loop	l_1 - l_2 loop
Loop Gain at 1 Hz	10 ⁶	3x10 ³	3x10 ⁶	2x10 ³
Unity Gain Frequency in Hz	10 ⁴	55	140	22
Phase Mar- gin	45°	46 ⁰	36°	40 ^o
Gain Margin	8	3	4	7
Gain at 8 kHz	~1	2x10 ⁻⁸	10 ⁻⁵	10 ⁻⁸
RMS Requirement (mrms)	2.5x10 ⁻¹² (equivalent)	1.6x10 ⁻¹⁰	10 ⁻¹²	1.3x10 ⁻¹⁰
RMS Motion (mrms)	8x10 ⁻¹³ (equivalent)	1.2x10 ⁻¹¹	1.15x10 ⁻¹³	1.5x10 ⁻¹⁰


Example Plot of Closed Loop Motion (L1-L2 Loop)

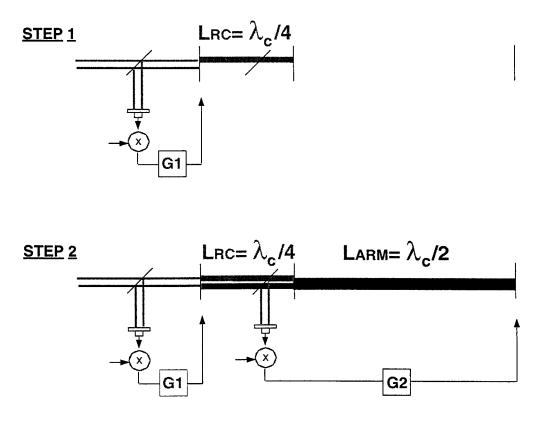
 Disturbance Input: Livingston spectrum filtered through baseline stack and suspension design


Shot Noise Performance for Auxiliary Length Control Servos

 Michelson I1-I2 shot noise ~16% of LIGO sensitivity between 40-140 Hz

Frequency Noise Suppression

	f = 100 Hz	f = 10 kHz	
δυ Requirement	10 ⁻⁷ Hz/Hz ^{1/2}	4x10 ⁻⁶ Hz/Hz ^{1/2}	
δυ from IFO Shot Noise	10 ⁻⁷ Hz/Hz ^{1/2}	3.3x10 ⁻⁶ Hz/Hz ^{1/2}	
ຽບ with IFO Feedback "Off"	10 ⁻⁴ Hz/Hz ^{1/2} (MC thermal noise)	10 ⁻⁵ Hz/Hz ^{1/2} (MC thermal noise and shot noise)	
δυ with IFO Feedback "On"	$5x10^{-9}$ Hz/Hz ^{1/2} (loop gain= $2x10^4$)	10 ⁻⁵ Hz/Hz ^{1/2} (loop gain=1)	



LIGO-G960103-00D

Concept for Acquisition Mode

- Concept based on coupled cavity acquisition model
 - >> cavities lock in natural sequence (sidebands first)
 - >> Threshold velocity is high for recycling cavity (broad fringe)

>> Threshold velocity lower for arm cavity acquisition unless bandwidth is very high (i.e. laser loop)

Concept for Acquisition Mode (cont.)

Projected locking behavior for recycling

> I_1 - I_2 and I_1 + I_2 have high threshold velocity (broad fringes)

>>L1+L2 has high threshold velocity (high BW servo)

>>L₁-L₂ loop has low threshold velocity (~same as 40m)

 Resulting configuration similar to Detection mode but with "Guided Lock" in L1-L2 loop

Concept for Acquisition Mode (contd.)

• Other differences from Detection Mode

>>Reduced low frequency gains (important for RMS reduction not acquisition)

>>Increased bandwidths (bandwidths important, not gain)

>>Unconditionally stable filters (get more gain and phase margin so believe acquisition will be more robust)

>>Switching system between Acquisition and Detection modes servos based on 40m switching design

Issues To Be Resolved

- Final decision on Detection mode configuration
- Completion of Acquisition Model to verify threshold velocities and conceptual design
- Systems engineering approach to resolve laser frequency noise issues

