The Detection of Gravitational Waves

Academic Lecture Series

Barry Barish CERN May 20-24, 1996

LIGO-G960139-00-M

Lecture 1

LIGO Introduction

- Laser Interferometer Gravitational Wave Observatory
 - » **DIRECT** Detection of Gravitational Waves
- Joint Caltech/MIT Project funded by the National Science Foundation
- Under Construction
 - » Two Sites -- Louisiana and Washington

U

o General Relativity 'fixes' the problem posed by moving sources of gravitational field. V a gravitationed field (eg. curvature of space time) does not change instantaneously at arbitrary distances from moving source. Analogous to E.M. the 'news' travels at speed of light.

1

.

• general definition of space-time interval ds² = guy drudx^v Space time curvature in this metric. o for our purpose, we only need special case of a small perturbation to flat space-time. gur = nur + hur L'metric perturbation away from Minkowski space. - Key physics in hur

- In weak field limit, non-linear be approximated Einstein equations can as linear equations

• Useful gauge is "transverse traceless
gauge" [TT gauge]
• in this gauge; coordinates are
marked by world lines of free
falling test masses
• with this choice, weak field limit
of Einsdein's field equation becomes
a wave equation

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) h_{\mu\nu} = 0$$

• hav can take form of plane
wave propogating in direction
 \hat{k} with speed C.
 $h\left(2\pi ft - \hat{k} \cdot \hat{x}\right)$ with $f = |\hat{h}|/2\pi c$
Note : speed C due to way

Space-time brought together in

relativity.

(4)

• Consider the wave propogating along the (5)

$$\Xi axis$$

$$h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & b & -a & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$transverse and traceless -
•• can write as sum of two components
$$h = a h_{+} + b h_{x}$$

$$two \text{ orthogonal polarizations (45°)}$$

$$h_{+} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$h_{x} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$$$

Gravitational Waves *Two Polarizations*

• •

. -

Gravitational vs E.M. Waves

EMWAVES		GRAV. WAVES	
Nature	Oscillation of EM Fields Propagating Through Spacetime	Oscillations of the "fabric" of spacetime	
Emission Mechanism	Incoherent superposition of waves from molecules, atoms, particles	Coherent emission by bulk motion of energy	
Interaction with Matter	Strong absorption and Scattering	Essentially None!	
Frequency Band	f > 107Hz	f < 104Hz	

Implications

- Most gravitational sources not seen as electromagnetic (and vice versa)
- Potential for great surprises
- Uncertainty in strengths of waves

4/22/95

Gravitational Waves Evidence

- Russell Hulse and Joseph Taylor
- Neutron Binary System
 » PSR 1913 + 16 -- Timing of Pulsars

LIGO-G960108-00-M

Hulse and Taylor Timing of Orbit

- Speed up 10 sec in 15 years
 - » measured to ~50 μsec accuracy
- Deviation grows quadratically in time

 Due to loss of orbital energy, from emission of gravitational waves

Gravitational Waves Effects

Displacement of free particles

» h₊ polarization

Gravitational Waves Detection

Interferometer detector

Laboratory Experiment (a la Hertz)

Laboratory Dumbbell System

$$f_{rot} = 1 \text{ kHz}$$

 $h_{lab} = 2.6 \ 10^{-33} \text{ m x 1/R}$
 $R = \text{detector distance (> 1 wavelength)} = 300 \text{ km}$
 $h_{lab} = 9 \ 10^{-39}$

This is too weak by about 16 orders of magnitude!

LIGO-G960108-00-M

Gravitational Waves *Sources and Detection*

binary star system

eter olate
olate
otor
,
ator
eter
eter
pace
eter,
ning

sources and detection

Gravitational Waves *Resonant Bar Detector*

... .

Schematic Version

Gravitational Waves *Resonant Bar Detection*

Bar detector

Group	Antenna	Transducer	Sensitivity (h)
CERN/Rome	Al5056, 2.3ton, 2.6K	Capacitive+SQUID	7×10^{-19}
CERN	Al5056, 2.3ton, 0.1K	Capacitive+SQUID	2×10^{-18}
LSU(USA)	Al5056, 1.1ton, 4.2K	Inductive+SQUID	7×10^{-19}
Stanford	Al6061, 4.8ton, 4.2K	Inductive+SQUID	10^{-18}
UWA(Australia)	Nb, 1.5ton, 5K	RF cavity	9×10^{-19}
ICRR(Japan)	Al5056, 1.7ton, 300K	Laser Transducer	-
KEK(Japan)	Al5056, 1.2ton, 4.2K	Capacitive+FET	$4 \times 10^{-22} (60 \text{Hz})$

Status of bar detectors

Michelson Interferometer Schematic Diagram

• Reflection at far mirrørs
$$(x-1)$$

• Light exiting thru output port
 $E_{out} = (\frac{i}{2})E_{o}e^{i(2\pi ft - 2k_xL_x)} + (\frac{i}{2})E_{o}e^{i(2\pi ft - 2k_yL_y)}$
Eout = $ie^{i(2\pi ft - k_xL_x - k_yL_y)}E_{o} cos(k_xL_x - k_yL_y)$
 $e^{i(2\pi ft - k_xL_x - k_yL_y)}E_{o} cos(k_xL_x - k_yL_y)$
 $e^{i(2\pi ft - k_xL_x - k_yL_y)}E_{o} cos(k_xL_x - k_yL_y)$
 $e^{i(2\pi ft - k_xL_x - k_yL_y)}E_{o} cos(k_xL_x - k_yL_y)$

o Measure difference in brightness (modern) Actual - slightly mis-aligned

Michelson Interferometer Interference Fringes

- Michelson Morley Experiment
 - » Two beams misaligned
- Impressionistic rendering

÷

Lecture 2

.

:

(13t IFO) (idea) (100) egedanter version of Michelson (1887) History Gravitational Wave ١ - far end flat micror -Gertsonshtein and Pustovoit (1962) -Moss, Miller + Forward (1971) - weber & Forward mirrors rest on freely-falling mass - weiss (1972) 50/50 spl; Her Detection . (mpullished) 5(096)

Gravitational Wave Signel
Consider light along
$$\hat{x}$$
 axis

$$ds^{2} = 0 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

$$= (\eta_{\mu\nu} + R_{\mu\nu}) dx^{\mu} dx^{\nu}$$

$$= -c^{2}d\ell^{2} + (1 + h_{11}(2\pi ft - \bar{k}\cdot \bar{x}))dx^{2}$$
(neighboring space-time events)
time - bean splitter to end of \hat{x} arm

$$\int_{0}^{T_{out}} dt = \frac{1}{c} \int_{0}^{c} \sqrt{1 + h_{11}} dx \approx \frac{1}{c} \int_{0}^{c} (1 + \frac{1}{2}h_{11}(2\pi ft - \bar{k}\cdot \bar{x}))dx^{2}$$
Round trip -
 $q_{rt} = \frac{2L}{c} + \frac{1}{2c} \int_{0}^{c} h_{11}(2\pi ft - \bar{k}\cdot \bar{x}) dx - \frac{1}{2c} \int_{L}^{c} h_{11}(2\pi ft - \bar{k}\cdot \bar{x})dx$
Similar for y -arm.

Consider special case,

- sinsuspidel wave in + polarizarition
- frequency = fgw
- amplitude $h_{11} = -h_{22} = h$

If $2\pi f_{gw} T_{rt} \ll 1$ can treat the metric perturbation as approximately constant during time wavefront is present in the apparatus

- equal and opposite perturbations to light travel time in two arms
- o total travel time difference

 $\int \Delta T(t) = h(t) \frac{2L}{L} = h(t) T_{rto}$ where $T_{rto} \equiv \frac{2L}{c}$.

Comparing travel time to (reduced) period of oscillation of the light gives phase shift 200 $\Delta \phi(t) = h(t) \mathcal{T}_{to} \frac{1}{\lambda}$ In words, phase shift between light traveled in the two arms equals a fraction h of the total phase a light beam accumulates as it traverses the apparatus. Scaling law won't hold for arbitrarily Long arms . (e.g. 27 fgw Trt «1

no longer holds) NO NET MODULATION IF faw Tre = 1

Michelson Interferometer Transfer function

Gravitational Wave Forces

<u>IF</u>

Detector Size << Wavelength

 (4 km)
 (300-30,000km)
 (10 kHz - 10 Hz LIGO)

<u>THEN</u>

+ Polarization

x Polarization

LIGO-G960108-00-M

Gravitational Wave Detector

Antenna Pattern

. . . .

» coordinate system

Figure 2.7 The sensitivity, as a function of direction, of an interferometric gravitational wave detector to unpolarized gravitational waves. The interferometer arms are oriented along the x and y axes.

Astrophysical Sources Frequency Range

- Electromagnetic Waves ~ 20 orders of magnnitude (ULF radio -> HE γ rays)
- Gravitational Waves ~ 10 orders of magnitude
- Combination of terrestrial and space experiments

Gravitational Waves Space Experiment

- LISA Laser Interferometer Space Antenna
 - » six spacecraft in triangle (four needed)
 - » pair at each vertex

LISA Annual Revolution

- 60 degree half opening angle
- 'tumbling' allows determination of position of source and polarization of wave

LIGO-G960108-00-M

Gravitational Waves International Effort

Techniques

- » Resonant Bar Detectors (LSU, Rome, etc)
 - narrow band
- » Large Scale Interferometers
 - broad band

International Interferometer Effort

- » U.S. -- LIGO (Two Sites)
 - Caltech & MIT (Wash and Louisiana)
- » Europe -- VIRGO (One Site)
 - French and Italian (near Pisa)
- » Smaller efforts
 - Germany, Japan, Australia
- Time Scale (Interferometers)
 - » Approximately year 2000

SCHEMATIC INTERFEROMETRIC DETECTOR

LIGO Achieving 10⁻¹⁸ m Sensitivity

- » Mirrors and light beam must be in vacuum
- Mirror's atoms vibrate (thermal noise)
 - » light beam feels 10¹⁸ atoms
 - » atoms vibrate fast: ~10¹³ Hz
 - » beam measures slow variables: ~ 100 Hz
- Earth vibrates and shakes mirrors
 - » anti-vibration suspension
 - » quiet environment

LIGO-G960108-00-M

- Noise Budget For First LIGO Detectors
- 5 Watt Laser
- Mirror Losses 50 ppm
- Recycling Factor of 30
- 10 kg Test Masses
- Suspension Q=10⁷

R = distance from source to observer

$$\hat{n}$$
 = unit vector source to observer
 \vec{d} = electric dipole moment
 \vec{d} = $\int dV g(r) r$
 g_{g} = charge density
integrate over source

.

.

Conservation of energy for gravitation same role as charge conservation in EM, therefore NO monopole radiation (grav)

What about dipole moment? (gravity)

$$\overline{d}_g = \int dV \ p(r) \ r$$

 $p(r) = mass density$
(conservation of momentum requires
 d_g constant for isolated systems)
 i ForeBIDDEN

Reduced quadrupole moment, $I_{\mu\nu} \equiv \int dV (x_{\mu}x_{\nu} - \frac{1}{3} \delta_{\mu\nu}r^2) \rho(\vec{r})$ Strongest allowed component of gravitational radiation how = 2 G Imv evaluate at retarded time t-R/C

.

Examine a special case,
• pair of equal point masses
moving in circular orbit
about COM, (binary star system)
Assume i each mass = M
separation = 2ro
orbit freq. = forb

$$I_{xx} = 2Mr_0^2 (cos^2 2\pi f_{orb} t - \frac{1}{3})$$

 $I_{yy} = 2Mr_0^2 (sin^2 2\pi f_{orb} t - \frac{1}{3})$
 $I_{xy} = I_{yx} = 2Mr_0^2 cos 2\pi f_{orb} t sin 2\pi f_{orb} t$
(omponents in = uninteresting,
 $I_{zz} = -\frac{1}{3}Mr_0 (constant)$ cross terms vanish
with x, y

:

Calculate second time derivative,
$$\vec{I}_{\mu\nu}$$

(eg. point along $\neq axis$, distance R)
 $h_{xx} = -h_{yy} = \frac{32 \pi^2 G}{R c^4} M r_s^2 \int_{ort}^2 \cos 2(2\pi f_{orb}) t$
 $h_{xy} = h_{yx} = -\frac{32 \pi^2 G}{R c^4} M r_o^2 \int_{ors}^2 \sin 2(2\pi f_{orb}) t$
can be re-arranged in more dimensionles.
form
 $|h| \approx \frac{r_{s_1} r_{s_1}}{r_o R}$
plug in to get representative strength
of gynv. waves h
- binary neutron stars $M = 14 M_0 \approx 3 10^{30} hg$
- almost touching $r_o = 20 km$
- orbital frequency $f_{orb} \approx 400 H_3 (relativity) t$
 $R \approx 15 Mpc \approx 45 10^{23} m$

Neutron Binary Systems Inspiral

- LIGO frequency band
 - » last 15 minutes (~10⁴ cycles)
- 'Chirp Signal'
- Detailed waveform gives masses, spins, distance, eccentricity of orbit, etc

LIGO Scientific Mission

Direct Detection of Gravitational Waves

- Benchmark Source: Neutron Binary Coalescence
 - Detect the last 15 minutes of Hulse/Taylor type binary system (eg. 100 million years)
 - Sensitivity -- detection rate >3 year
- Other Sources
- Fundamental Physics (GR)
 - » Test General Relativity in Strong Field and High Velocity Limit
 - » Measure Polarization and Propagation Speed

LIGO-G960108-00-M

.

Neutron Star Binary Coalescence

<u>Method</u>	<u>Our</u> Galaxy	<u>Distance for</u> <u>3/yr</u>
Progenitor Death Rate	~1/1000 yr	130 M.L.yr
Binary Pulsar Searches and Discoveries	~1/10 ^{5±1} yr	600 M.L.yr.
Ultra-conservtive Limit from Binary Pulsar Searches	~1/10 ⁷ yr	3000 M.L.yr

a an a successful the second secon

Lecture :

sense verste Robertseren

B. BARISH

NEUTRON STAR BINARIES

[our best understood source]

Hulse/Taylor (1993 Nobel Prize):

- Observed slight inspiral of PSR1913+16, due to energy lost to grav'l waves
 - Thereby proved (indirectly) that gravitational waves exist

LIGO's Goals:

To detect the waves directly, and by extracting the rich information they carry, use them to study:

The nature and dynamics of gravity (spacetime warpage)

The "dark side" of the universe

The trouble with PSR1913+16: It's wave frequency is 0.0001 Hz LIGO's band is 10 to 1000 Hz We must wait 100 million yrs for PSR1913+16 to reach LIGO's band

Gravitational Waveforms binary inspiral

can determine

>>

» distance from the earth r-

» masses of the two bodies

orbital eccentricity e and orbital inclination i

LIGO

LIGO-G960108-00-M

• PSR 1913 +16
$$f = 2f_{orb} \approx 4 hr^{-1}$$

in 10 yrs \Rightarrow 10 - 1000 Hz bond
CHIRP Signal

in weak field approximation

$$f(t) = 2.1H_3 \times \left(\frac{M_1 + M_2}{M_1^3 M_2^3}\right)^{1/8} \left(\frac{1 day}{T}\right)^{3/8}$$

$$h(t) = 6.6 [0] \frac{15 \text{ MPc}}{R} \left(\frac{M_1^3 M_2}{M_1 + M_2}\right)^4 \left(\frac{1 \text{ day}}{T}\right) (1 + 6 \cos^2 \theta + \cos^2 \theta)$$

$$M_1, M_2 \text{ masses of neutron stars}$$

T time to collision O inclination of orbit R distance away at collision, f~ 1kHz ; h~ 10⁻²¹ @VIR60 (rest mass radiated)

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

Binary Sources Inspiral and Coalescence

LIGO

LIGO-G960108-00-M

-

LIGO Long Range Goals

Final Coalescence of Binary Systems

- » Neutron Star/Neutron Star
 - Design Benchmark:

last 15 min 20,000 cycles 600 MLyr

- » Black-hole/Black-hole
- » Black-hole/Neutron Star

Supernovae

- » Axisymmetric in our galaxy
- » Non-axisymmetric ~300MLyr

• Early Universe

- » Vibrating Cosmic Strings
- » Vacuum Phase Transitions
- » Vacuum Fluctuations from Planck Era

we have a second of the second s

Unknown Sources

LIGO-G960108-00-M

and the second second

BLACK HOLE BINARIES

SPINNING, "MOUNTAINOUS" NEUTRON STAR Periodic I MPLOSION OF A STAR'S CORE WHICH TRIGGERS A SUPERNOVA Bursts <u>\</u>__ VIBRATING LOOPS OF COSMIC STRING Stochastic

Pulsars
periodic sources
-periodic waveform (integrate for long time)
-rotating non-axisymmetric neutron stars
Simple model :

$$M = 1.4 M_0$$

 $r = 10 \text{ tm}$
 $I = 10 \text{ tm}$
 $I = 10^{45} \text{ gm cm}^2$
 f
 $f = \frac{4\pi^2 G}{Rc^4} \in I f^2$
 $f = equitorial ellipticity
Tourly known$

,

Estimate distortion due to dipole magnetie field $\varepsilon \approx \frac{U_{mag}}{U_{arau}} \approx \frac{B^2 R^4}{G M^2} \approx \frac{-12}{10}$ Ugrav (if) B = 10¹² gauss (typical of pulsars) $h \approx 3 10 \left(\frac{f}{1 \, \text{kH}_2}\right)^2 \left(\frac{10 \, \text{kpc}}{R}\right)$ (if) pulsars born rapidly rotating then several most recent pulsars with such amplitude in our galaxy any time Note fastest known pulsar PSR1937+214 only has B = 10° gauss, but it is thought this pulsar was 'spun up' by consuming low mass companión ALSO "Wagoner star" enhancement.

Type I - explosive detonation of a white dwarf star (no substantial emission of gravitational waves)

<u>Type II</u> - may emit strong gravitational wa**ves**

> 'naked eye! observations 16th century (Tycho) SN 1987A (neutrinos)

Gravitational radiation (mechanism)

- -massive stur produces core ~1.4 Mo
 - which has burned to won (white dwarf)
- electron degeneracy pressure no longer can support the core
- matter converts into neutrons
- collapses
- bounce @ nuclear densities (~310 gm/cm³)

FIGURES

FIG. 1. A grey-scale rendering of the entropy distribution at the end of the simulation, about 50 milliseconds into the explosion. Note the pronounced pole-to-pole asymmetry in the ejecta and the velocity field (as depicted with the velocity vectors). The physical scale is 2000 km from the center to the edge. Darker color indicates lower entropy and $\theta = 0$ on the bulge side of the symmetry axis.

		· · · · · · · · · · · · · · · · · · ·	
	· · ·	·····	· · · · · · · · · · · · · · · · · · ·
FT			
			i 1
<u>0</u>		······	
		<u> </u>	· ·
	Total	Μ	
<u><u> </u></u>	<u> </u>		
-400			
		<u> </u>	
0	Time (sec)		.,
FIG. 2. The	inferred recoil speed (in km s^{-1}) imparted to the core	versus time (in se	econds) for
the simulation b	ighlighted in this paper. The initial momentum is ap	proximately zero,	but grows
systematically a	after bounce in the direction opposite to the artificial	wedge, cut into	the core to
mimic an asym	metry just before collapse. Shown are the total recoil	(solid) and the co	
due to the neut	rino emission anisotropy (dashed) and the ejecta moti	ions (dotted).	
			,
			·
			· · · · · · · · · · · · · · · · · · ·
			-
			,
	12		

50	
1	
··· ··· ··· ···	
Ê 0	Total -
<u> </u>	
	Neutrinos
	E
-100	
·	.2 .22 .24
	IME (SEC)
FIG.	3. The gravitational-wave strain; n_{22} , times the distance of the distance
	The total matter, and neutrino waveforms
time (in	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms
time (in are rende	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ared with the solid, dotted, and dashed lines, respectively.
time (inare rende	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (inare rende	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (inare-rende	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (in are rende	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (inare-rende	seconds). Core bounce is at 0.215 seconds. The total. matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (inare-rende	seconds). Core bounce is at 0.215 seconds. The total. matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (in are rende	seconds): Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (inare-rende	seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.
time (in	seconds): Core bounce is at 0.215 seconds The total, matter, and neutrino waveforms
time (in	seconds): Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms ered with the solid, dotted, and dashed lines, respectively.

.

,

• physics modeling very difficult (departure from spherical shape) • guidance (unclear) = supercomputers assume spherical sym. = 2D models (Burrows) - crab pulsar frot = 30.3 Hz J = 2 1047 erg-sec (Saonz-Skayiro -> radiate gravitational 3 10 of rest mass h= 10 @ VIRGO - collapsing cores - w/ high angular momentum? (eg "millisecond pulsars)
HE BIG BANG SINGULARITY

Space & Time come into being

> LIGO 10 Sec Temp~10 Gev graviton~10 MeV graviton~10 MeV (0^{-Hsec} Temp~10² Gev (electrowle) (10⁻²Hz) graviton~1 keV

:

• could come from early Universe LIGO Band ~ 10⁻²² sec (also could be overwhelmed by more recent sources)

• graviton background analogous to Rem THERMAL SPECTRUM Trog K (smaller than Cosmic Microwave Background Radiation because in conventional Act big bang model, gravitons decoupled when temperature of Universe dropped below Planck temp)

• unlikely equilibrium was established since gravitational interactions so weak (time required longer than expansion time)

detection
 correlate (anticorrelate) signals
 from different detectors
 (eg <64H3 LIGO detectors correlated)

LIGO Sensitivity

LIGO The Project

- National Science Foundation
- Construction Project (1995-1999)
 - » Facilities and Initial Detector

Commission Facility (1999-2001)

- » Implement Initial Detectors
 - $-h \sim 10^{-20}$ Coincidence
 - Initial Search (end of 2000)
 - $-h \sim 10^{-21}$ Initial Design Sensitivity (end 2001)

• Full Operations (2002 + ...)

- » Data Dating/Analysis
 - data collaboration with VIRGO
- » Enhance Initial Detector
 - incorporate outside collaborations
- » Advanced Detectors
 - Syracuse, Colorado, Stanford, etc
 - Caltech/MIT efforts

LIGO-G960108-00-M

Untitled - 6

LIGO Site Pair

- Hanford, Washington
 - Located on U.S. Dept. of Energy Reservation
 - Treeless, Semi-arid Desert
 - Approx. 25 km from Richland (Metropolitan Pop. 140,000)
- Livingston, Louisiana
 - Located in Forested Rural Area
 - Approx. 50 km from Baton Rouge (Pop. 450,000)

Measured waveform, $h(time) = \Delta L/L$, is a linear combination of h_+ and h_X , which depends on interferometer's orientation

Description of LIGO

- Two Sites Widely Separated
- Hanford, Washington
 - 4km and 2km Interferometers
- Livingston, Louisiana
 - 4 km Interferometer
- Expansion for Advanced Detectors

THE LIGO/VIRGO NETWORK

Pisá

Hanford & Livingston: Close enough together to be nearly in same plane; same orientation. SEE SAME WAVEFORM Hanford 2500 km Livingston

Hanford/Livingston plane is approximately perpendicular to Pisa plane; so orientations are very different. Thus, **DIFFERENT WAVEFORMS**

Consequences:

Pisa **CANNOT** be used, together with Hanford or Livingston, to search for waves

Pisa must be added to the Network, in order to extract full information from the waves:

Both Waveforms: h_+ , h_X Direction to Source

Interferometers

LIGO Measures <u>one</u> waveform

- » orientation aligned (Washington & Louisiana)
- » direction(timing) determined ~10' to ~ 1° on ring
- LIGO + VIRGO(Italy)
 - » decompose waveforms $(h_{+}(t),h_{x}(t))$
 - » direction 10' to 1°

Source Positions

 Celestial Sphere position location from LIGO (two interferometers)

- determine from time shift between detectors (~.1 msec accuracy)
- 'declination angle' of circle (ring)

$$\Theta = \arcsin \frac{c \Delta t_{sig}}{D}$$

LIGO-G960116-00-M

Source Positions

LIGO (2 det) + VIRGO (1 det)
decomposition of waveforms

» $h_x(t), h_+(t)$

position on sky (two positions)

ef.

L

IGO

LIGO-G960116-00-N

Lecture 4

B. BARISH

LIGO Basic Configuration

Michelson with Fabry-Perot cavities

Initial Interferometer Specifications

Strain Sensitivity [ms, 100 Hz band]	10-21		
Displacement Sensitivity (rms, 100 Hz band]	4 x 10 ⁻¹⁸ m		
Fabry-Perot Arm Length	4000 <i>m</i>		
Vacuum Level	< 10 ⁻⁸ torr		
Laser Wavelength	1064 <i>nm</i>		
Optical Power at Laser Output	▲ 10 W		
Optical Power at Interferometer Input	5 W		
Power Recycling Factor	30		
Input Mirror Properties	Reflectivity = 0.97		
End Mirror Properties	Reflectivity > 0.9998		
Arm Cavity Optical Loss	≤ 3%		
Light Storage Time in Arms	1 <i>ms</i>		
Test Masses	Fused Silica, 11 kg		
Mirror Diameter	25 cm		
Test Mass Period Pendulum	1 sec		
Seismic Isolation System	Passive, 4 stage		
Seismic Isolation System Horizontal Attenuation	≥ 10 ⁻⁷ (100 <i>Hz</i>)		
Maximum Background Pulse Rate	1 per minute		

LIGO-G960108-00-M

NEUTRON STAR BINARIES

["Near-Guaranteed" source]

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

Initial Interferometers Noise Floor

LIGO

LIGO-G960108-00-M

Gravitational Wave Detection Strategy

Interferometer Sensitivity	
⇒ R&D Program	
 Technology Development 	
 Demonstration Experiments 	
\Rightarrow Engineering Implementation	
 Precision Engineering Design 	
 Quality Control 	
Two Sites - Three	
Interferometers	
⇒ Single Interferometer	~50/hr
 non-gaussian level 	,
\Rightarrow Hanford (Doubles)	~1/day
 correlated rate (x1000) 	
\Rightarrow Hanford + Livingston	<0.1/yr
 uncorrelated (x5000) 	

5

Interferometers Coincidence Experiment

Interferometer

.

types

Folded interferometers

- » Delay-Line (N=4)
- » Fabry-Perot

Interferometers Coincidence Experiment

- Glasgow Garching
- 100 hour coincidence experiment
 - » Analysis
 - level 1 housekeeping vetoes
 - level 2 62 hrs good data (<4 10-17 for 1.6 sec)
 - level 3 require same strain in both detectors
 - » Result
 - h < 1.6 10⁻¹⁶ from zenith and optimumpolarization

- h < 3.6 10⁻¹⁶ any direction and any polarization

LIGO-G960116-00-M

LIGO Project Technical

Major Facilities

- » Beam Tube
- »[°] Vacuum Systems
- » Civil Construction

Detector

- » Detection Strategy
- » Interferometers

- » Noise Sources and Sensitivity
- » Demonstration Experiments

Status and Plans

Untitled - 1

Gravitational Wave Strength

Strain Sensitivity

$$h \approx \frac{G(E_{kin}^{ns} / c^2)}{r} \frac{1}{c^2}$$

for
$$E_{kin}^{ns} / c^2 \sim M_{\Theta}$$

 $h \sim 10^{-20}$ for Virgo Cluster of Galaxies
 $h \sim 10^{-23}$ at Hubble Distance

LIGO Goal: $h \sim 10^{-22}$ Detector $\Delta L = hL$ $L = 4km \implies \Delta L = 10^{-16}cm$

This leads to Stringent Specifications:

Vacuum Seismic and Acoustic Isolation Test Mass Suspensions Optics etc.

LIGO

LIVINGSTON PARISH

LOUISIANA

AERIAL PHOTO BY:

GULF COAST AERIAL MAPPING

• #

FLOWN: AUGUST 25, 1995

ALTITUDE: 12,000 FEET

Beam Tube

Beam Tube

- □ Characteristics
 - ⇒ Arm Lengths 4km
 - ⇒ Tube Diameter 4 ft
 - ⇒ Initial Detector
 - 10⁻⁶ torr Hydrogen; 10⁻⁷ torr Water
 - ⇒ Advanced Detectors
 - 10⁻⁹ torr Hydrogen; 10⁻¹⁰ torr Water
 - ⇒ Quality Control
 - (materials, welding, cleaning, etc)

Status and Plans

- ⇒ Design Contract was with CBI
 - Final Design Report Accepted (6/94)
- ⇒ Qualification Test
 - 130 ft Section success (4/95)
- ⇒ Contract Options

LIGO

4/30/95

LIGO Facilities Beam Tube Enclosure

Sec.

and the second

. -

.

4

UN OT STEAM CLEANING SPRAY UNIT

.

FIGURE1.1.2 #4 BAFFLE SCHEMATIC

~

ł

i

+

Initial Interferometer Noise Budget

LIGO-G952001-00-B

Advanced Interferometer Noise Budget

• :

6 of 13

LIGO-G952001-00-B

\

:

...

•

.

.

.:

LIGO Facilities *Vacuum Equipment*

Characteristics

- » mostly standard vacuum equipment
 - 1st stage roughing atm -> 0.1 torr
 - 2nd stage roughing 0.1 torr -> 10⁻⁶ torr
 - steady state ion/getter pumps
- » large gate valves (4 ft diam)
 - access and flexibility
- » controls and monitoring

- » Science requirements and review 6/94
- » RFP issued for design contract only
- » Two competitive contracts awarded (CB&I, PSI)
- » Final design and manufacturing
 - down select (6/95) to PSI
 - CDR approved 10/95
 - FDR May 96; some prototype/acquisitions now

LIGO-G950085-00-M

FIG. 3 INTERNAL ACCESS

Lecture 5

.

B. BARISH

Astrophysical Sources Frequency Range

- Electromagnetic Waves ~ 20 orders of magnnitude (ULF radio -> HE γ rays)
- Gravitational Waves ~ 10 orders of magnitude
- Combination of terrestrial and space experiments

Gravitational Waves Space Experiment

- LISA Laser Interferometer Space Antenna
 - » six spacecraft in triangle (four needed)
 - » pair at each vertex

LISA Annual Revolution

- 60 degree half opening angle
- 'tumbling' allows determination of position of source and polarization of wave

LISA Space Interferometry

LIGO

LISA Sensitivity Strength of various sources and sensitivity curve of LISA 10⁷M_oBH coalescence z=1 normal binaries 10⁻¹⁹ IWDB's X-ray binary 10⁶M_o BH coalescence z possible extragalactic 10⁵M_o BH coalescence z=1 BH formation z=1 LISA threshold, typical S/N = 5 as detector turns during a 1-year observation of a fixed source 10+10⁶M_o BH z=1 4U1820-30 GW background, $\Omega_{gw} = 10^{-8}$ CWDB background lo rms detector noise $\Omega_{inflation}(\max)$ for a 1 yr observation 10⁻²⁴ of a GW background ran 10⁻² 10-1 10⁻³ 10-4 frequency f (Hz)

LISA spacecraft layout

six identical spacecraft

LISA payload and optical bench

Table I. LISA Mission Summary						
Objectives:	Detection of low-frequency $(10^{-4} \text{ to } 10^{-1} \text{ Hz})$ gravitational radiation with a strain sensitivity of $10^{-21}/\sqrt{\text{Hz}}$.					
	Typical sources are galactic binaries (black holes, neutron stars, white dwarfs), extra-galactic supermassive black hole formations and coales- cences, and background gravitational waves from the Big Bang.					
Payload:	Laser interferometry with electrostatically controlled drag-free reference mirrors housed in six spacecraft; optical arm lengths 5×10^8 km.					
	Each spacecraft has two lasers (one spare) which operate together in a phase-locked transponder scheme.					
	Diode-pumped Nd-YAG lasers: wavelength 1.064 μ m, output power 1 W, Fabry-Perot reference cavity for frequency-stability of 3 Hz/ $\sqrt{\text{Hz}}$.					
	Quadrant photodiode detectors with interferometer fringe resolution of $10^{-5}\lambda$.					
	38 cm diameter f/1 Cassegrain telescope (transmit/receive) with $\lambda/30$ wavefront quality.					
	Drag-free proof mass (mirror): 4 cm cube, Au-Pt alloy of extremely low magnetic susceptibility ($< 10^{-6}$); Ti-housing at vacuum $< 10^{-3}$ mbar; six-degree-of-freedom capacitive sensing.					
Orbit:	Each spacecraft orbits the Sun at 1 AU. The inclinations are such that their <i>relative</i> orbits define a circle with radius 3×10^6 km and a period of 1 year. The plane of the circle is inclined 60° with respect to the ecliptic.					
	On this circle, the spacecraft are distributed at three vertices, defining an equilateral triangle with a side length of 5×10^6 km (interferometer baseline). Each vertex has two closely-spaced spacecraft (200 km apart).					
	This constellation is located at 1 AU from the Sun, 20° behind the Earth.					
Launcher:	Ariane 5, dual launch configuration with two sets of two spacecraft in the lower compartment, and one set in the upper, under the short fairing.					
	Each spacecraft has its own jettisonable propulsion module to provide a ΔV of 1000 m/s for final orbit injection.					
	Annual launch window: April – October					
Spacecraft:	3-axis stabilized drag-free spacecraft (six)					
mass:	290 kg, each spacecraft in orbit					
propulsion module:	240-920 kg (depending on launch date), for two spacecraft					
total launch mass:	6200 kg					
power:	183 W, each spacecraft in orbit					
Drag-free performance:	FEP thrusters					
Pointing performance:	few nrad/ $\sqrt{\text{Hz}}$ in the band 10 ⁻⁴ to 10 ⁻¹ Hz					
Payload, mass:	67 kg, each spacecraft					
power:	48 W, each spacecraft diameter: 0.5 m, height: 1.7 m, each spacecraft					
Telemetry:	560 bps continuous, total for all six spacecraft Ground stations: Villafranca (Spain), Perth (Australia)					
Nominal Mission Lifetime:	specification 2 years; 3–10 years feasible					

Gravitational Waves *Resonant Bar Detector*

Schematic Version

LIGO-G960116-00-M

Gravitational Waves *Resonant Bar Detection*

Bar detector

	Group	Antonna		
	CERN/Roma	Alfora a di	Transducer	Sensitivity (b)
	onullime	A15056, 2.3ton, 2.6K	Capacitive+SOUD	7 × 10-19
	CERN	A15056, 2.3ton 0 1K	Constitute South	1 × 10 ±
	LSU(USA)	A15056 1 1400 4 015	Capacitive+SQUID	2×10^{-18}
I	Starford	110030, 1.1ton, 4.2K	Inductive+SQUID	7×10^{-19}
I	Stamord	A16061, 4.8ton, 4.2K	Inductive_SOUTD	10-18
I	UWA(Australia)	Nb. 1.5ton 5K		10-10
	ICRR(Japan)	A15056 1 74	r.F cavity	9×10^{-19}
	KEK(Inpan)	A10030, 1.7ton, 300K	Laser Transducer	_
L	(Japan)	A15056, 1.2ton, 4.2K	Capacitive+FFT	4×10^{-22} (corr.)
			Family Line	$\pm \times 10^{}$ (60Hz)

Status of bar detectors

Resonant Bars Support Scheme

ALLEGRO detector

LIGO

Resonant Bars ALLEGRO

average detected noise

- » (day 142, 1994)
- » large excursion is squid reset (vetoed)

LIGO

(footer)

Resonant Bars ALLEGRO

LIGO

Resonant Bars ALLEGRO

- All events
 - » first 5 months of 1994
- Non-gaussian tail

Resonant Bars

- » First 5 months 1994
- » All non-vetoed events included

LIGO

Resonant Bars *Coincidence Run*

• Stanford 1982

• Explorer and Allegro 1991 - 6 months

Resonant Detectors Next Generation

· ······

Omni-directional detectors

- » attach transducers to faces of inscribed dodecahedron (Johnson and Merkowitz)
- » 2.6 meter diam, resonant at 1 kHz, 26 metric tons

TIGA

Resonant Detectors Spherical Array

8 spherical detectors (xylophone)
 » lowest quadrupole mode

. . . .

Resonant Detectors Spherical Array

8 spherical detectors (xylophone)
 » first excited quadrupole mode

Initial Interferometers Configuration

Initial Interferometers Noise Floor

Strain Amplitude Density (1/⁄Hz)

LIGO

LIGO-G960108-00-M

LIGO Interferometers Optical Parameters

OPTICAL CHARACTERISTICS	NOMINAL INITIAL INTERFEROMETER	SAMPLE ENHANCED INTERFEROMETER
Arm Length	4000 m	4000 m Nd:YAG, $\lambda = 1.064$ μm
Laser Type & Wavelength Input Power into	6W	100W
Recycling Cavity, P	3 x 10 ⁻³	3 x 10 ⁻³
Mirror Loss, L _M	1 x 10 ⁻⁴	1.3 x 10 ⁻⁵
Power Recycling Gain	$\frac{30}{8.8 \times 10^{-4} \text{ s}}$	$1.3 \times 10^{-3} s$
Cavity Input Mirror	3 x 10 ⁻²	2 x 10 ⁻²
Transmission, T Total Optical Loss,	4 x 10 ⁻²	3 x 10 ⁻³
TL - (troporhanger i a and on		

LIGO Interferometers Mechanical Parameters

MECHANICAL CHARACTERISTICS	Nominal Initial Interferometer	SAMPLE ENHANCED INTERFEROMETER
Mirror Mass, M _M	10.7 kg	40 kg
Mirror Diameter, D _M	0.25 m	0.40 m
Mirror Internal Q _M	1 x 10 ⁶	3×10^7
Pendulum Op(damping mechanism)	1×10^5 (material)	1×10^8 (material)
Pendulum Period, Tp	1 s (Single)	1 s (Double)
Seismic Isolation System	T(100 Hz) = -100 dB	T(10 Hz) = -100 dB

•

Interferometer Noise Limitations

LIGO-G960108-00-M

LIGO R&D Program

Sensitivity

- » main features of 40 m spectrum understood
- » monolithic test masses improve sensitivity

Demonstration Experiments

- » optical recombination demonstrated on 40 m
- » acquisition locking with LIGO controls
- » MIT phase noise experiments

Pre- [detector design freeze][<1998]

» Program testing directed at tasks that could effect design over the next two years

Post- [detector design freeze][>1998]

- » Advanced R&D program on techniques for improved sensitivity;
- » understand performance initial interferometer
- gain experience running an interferometer facility (perform search)

Displacement Sensitivity of 40-Meter Interferometer

~fjr/fort/mk2/port_90_94.xvgr

mk2thaarv2

LIGO 40m Prototype

LIGO-G960108-00-M

Displosement (m/VHz)

7.B

PROTOTYPE ISOLATION STACK

SEI Configuration

PASSIVE ISOLATION CONCEPT

Baseline Isolation Performance

• Displacement noise 10⁻²¹ m/rHz @ 100 Hz

Hanford Corner Station SW Arm Axis, Late Night December 12,1994 (Preliminary Data)

Hanford Corner Station SW Arm Axis, Morning Traffic December 13,1994 (Preliminary Data)

Interferometers Mechanical Thermal Noise

LIGO-G960108-00-M

Suspension Thermal Noise

Observation of Thermal Noise in Violin Modes of 40-m Test Mass Suspensions

LIGO Suspended Test Mass

• 40 m prototype design

Pendulum suspension of test mass

- » magnetic/coil actuators damp angular motion
- » piezoelectric actuator damp longitudinal motion

LIGO Test Masses

- Monollithic fused silica $(Q > 10^6)$
- Internal resonance ~ 30 kHz
- structural vs viscous damping

٠.

Magnetically Levitated Test Mass

Ø

LIGO Phase Noise

- Phase Noise Interferometer (MIT)
 - » 70 W recycled configuration
 - » demonstrate phase sensitivity for LIGO

Shot Noise

$$\delta h(f) \approx \frac{1}{L} \left(\frac{\partial \phi}{\partial x}(f) \right)^{-1} \delta \phi(f)$$

$$PROPERTY OF$$

$$INTERFEROMETER$$

$$OPTICAL CONFIGURATION DETERMINED PRIMARILY$$

$$(MIRROR R's, ETC.) BY EFFECTIVE OPTICAL POWER$$

- Achieving Shot-Noise Limited Phase Sensitivity Requires Understanding and Control of All Other Optical Sources of Noise
 - Laser Noise
 - Photodiode Uniformity
 - Modulator-Induced Noise
 - Scattered Light

LIGO Requirement 10^{-1} Current 40-m Interferometer 10^{-8} MPQ Garching 10^{-9}

Prestabilized Laser (PSL)

- Power Stabilization $\Delta P / P \sim 10^{-7} / \sqrt{Hz}$
- Frequency Stabilization $\Delta f / f \sim 10^{-15} / \sqrt{Hz}$
- <u>Status:</u> Working LIGO subsystem

>>DRR, PDR complete

- Phase modulation for IFO length control
- 12 m Mode Cleaner

>>Reduces pointing jitter $\Delta \theta_{out} / \Delta \theta_{in} \sim 10^{-3}$

>>Additional frequency stabilization $\Delta f / f \sim 10^{-18} / \sqrt{Hz}$

- Mode matching, beam steering to Core Optics
- <u>Status</u>: Conceptual Design Phase

۰.

Three-Point Optical Lever

LIGO-G9500xx-00-D

Length Sensing/Control System

LIGO Recycled/Recombined Interferometer

- 4 signals used for controlling 4 degrees of freedom
- Important degrees of freedom: 2 arm cavity lengths and 2 recycling cavity lengths

Control Design for 2 Modes of Operation

- Operations Mode (linear dynamic model)
- Lock Acquisition (highly nonlinear dynamic model)

Model Development for Control Design

- Operations Mode model complete
- Acquisition Mode model complete for coupled cavity interferometer

LIGO Length Sensing

 Signals sensitive to length degrees of freedom

INTERFERIN G FIELDS		SIGNAL LOCATION	DEGREE OF FREEDOM
C and CSB		anti-symmetric port	L_1 - L_2 , differential arm cavity length
C and CSB		reflected from recycling mirror	L ₁ +L ₂ , common mode arm cavity length
FSSC and SCSB1		anti-symmetric port	l ₁ -l ₂ , differential mode Michelson length
FSSC and SCSB2		reflected from recycling mirror	l ₁ +l ₂ , common mode Michelson length
Carrier C C C C C C C C C C C C C C C C C C C			

Initial LIGO Noise Sources

(April 8th 1996 Parameter Set) 10⁻¹³ ----- Soj. Req. Doc. Curve Combined Models Saismic Noise 10⁻¹⁴ Top Plate Thermal Noise Pendulum & Violin Thermal Noise Vertical Spring Thermal Noise Pitch Thermal Noise Yaw Thermal Noise Test Mass Internal Thermal Noise **10⁻¹⁵** Shot Noise (equivalent) Radiation Pressure Noise Quantum Limit Sensitivity [meters/root(Hz)] Sensitivity 10^{-16} 10^{-17} 10^{-18} 10^{-19} 10^{-20} 10⁻¹⁹ 10⁻²¹ 10⁻²² 10⁻²³ 10000 1000 100 10 1 Frequency [Hz]

÷

LIGO Systems Engineering and Integration 40 m Lab

Enhanced Interferometer Noise Budget

LIGO Facilities *Limiting Noise Floor*

Quantum limit for interferometer performance

Two important noise terms, inverse dependence on light power:

Shot noise

fluctuations in number of photons/secequivalently, shot noise in photocurrent

$$\widetilde{h} = \frac{T\lambda}{8\pi L} \sqrt{\frac{\mathrm{h}\nu}{P}}$$

Radiation pressure

o uncorrelated in arms

o imparts random momentum to test masses

$$\tilde{h} = \frac{4}{cTLm\omega^2}\sqrt{Ph\nu}$$

o minimum for

$$P_{\rm opt} = \frac{L^2 \lambda m \omega^4}{2\pi c}$$

o gives quantum limited sensitivity of

$$\widetilde{h}_{\text{QL}}(f) = \frac{1}{2\pi L f} \sqrt{\frac{4h}{\pi m}}$$

Ý

L (length)

(transmission)

$$\tilde{h}_{\rm QL} = 5 \times 10^{-24} \text{ Hz}^{-\frac{1}{2}}$$
 for $L = 4 \text{ km}$, $f = 100 \text{ Hz}$,
 $m = 10 \text{ kg}$, $\lambda = 514 \text{ nm}$, $P = 7 \text{kW}$;
a problem for second (or third?) generation antennas.

For now, wish to maximize circulating power.

Hz, powe

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

Interferometers Sagnac

Interferometers Sagnac

Stanford test Sagnac

Interferometers Sagnac

- Shot Noise Phase Sensitivity Measurement
- Phase Sensitivity = 3 10⁻⁹ rad/Hz^{1/2}
 - » (within 3 db of shot noise limit)

LIGO-G960000-00-M

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

Conclusions

- LIGO Construction is well Underway
- Direct Detection of
 Gravitational Waves Appears
 Realistic within 10 years
- Ultimate Sensitivities
 Capable of Opening a New
 Field of Observational
 Astronomy with Gravitational
 Waves is the Long Term
 Goal.

