LIGO The Detection of Gravitational Waves

Barry Barish

International Workshop "New Worlds in Astroparticle Physics" University of Algarve, Faro, Portugal 8-10 September 1996

LIG0-G960203-00-M

LIGO Introduction

- Laser Interferometer Gravitational Wave Observatory
 - » **DIRECT** Detection of Gravitational Waves
- Joint Caltech/MIT Project funded by the National Science Foundation
- Under Construction
 » Two Sites -- Louisiana and Washington

LIGO-G960115-00-M

Gravitational vs E.M. Waves

	EM WAVES	GRAV. WAVES
Nature	Oscillation of EM Fields Propagating Through Spacetime	Oscillations of the "fabric" of spacetime
Emission Mechanism	Incoherent superposition of waves from molecules, atoms, particles	Coherent emission by bulk motion of energy
Interaction with Matter	Strong absorption and Scattering	Essentially None!
Frequency Band	f > 107Hz	f < 104Hz

Implications

- Most gravitational sources not seen as electromagnetic (and vice versa)
- Potential for great surprises
- Uncertainty in strengths of waves

Gravitational Waves *Two Polarizations*

LIGO-G960116-00-M

Gravitational Wave Forces

IF

Detector Size << Wavelength

(4 km)

(300-30,000km) (10 kHz - 10 Hz LIGO)

THEN

- **Free Masses**
- Quadrupolar Lines of Force

+ Polarization x Polarization

LIGO-G960108-00-M

Gravitational Waves Effects

• Displacement of free particles

» h₊ polarization

Gravitational Waves Detection

Interferometer detector

Gravitational Waves Evidence

• Russell Hulse and Joseph Taylor

• Neutron Binary System

» PSR 1913 + 16 -- Timing of Pulsars

Hulse and Taylor Timing of Orbit

- Speed up 10 sec in 15 years
 - » measured to ~50 µsec accuracy
- Deviation grows quadratically in time

 Due to loss of orbital energy, from emission of gravitational waves

LIGO-G960108-00-M

Laboratory Experiment (a la Hertz)

Laboratory Dumbbell System

$$f_{rot} = 1 \text{ kHz}$$

$$h_{lab} = 2.6 \ 10^{-33} \text{ m x 1/R}$$

$$R = \text{detector distance (> 1 \text{ wavelength}) = 300 \text{ km}}$$

$$h_{lab} = 9 \ 10^{-39}$$

This is too weak by about 16 orders of magnitude!

LIGO-G960108-00-M

Gravitational Waves *Sources and Detection*

binary star system

Sources	Frequency	h	Event Rate	Detection
Coalescing Binary Neu-	10~1000 Hz	10^{-22}	$\sim 3/year$	Interferometer
tron Stars (200 Mpc)				+Template
Supernovae	~1 kHz	10^{-18}	$\sim 3/century$	Interferometer,
(in our Galaxy)				Resonant
Supernovae (in Virgo)	~1 kHz	10^{-21}	several/year	Interferometer
Generation of Large	~1 mHz	10-17	1/year	Interferometer
Black Holes				in Space
Pulsars	10~1000 Hz	10^{-25}	periodic	Interferometer,
			_	Resonant
Cosmic Strings	10^{-7} Hz	10^{-15}	stochastic	Pulsar Timing

sources and detection

LIGO-G960116-00-M

سل

Astrophysical Sources Frequency Range

- Electromagnetic Waves ~ 20 orders of magnnitude (ULF radio -> HE γ rays)
- Gravitational Waves ~ 10 orders of magnitude
- Combination of terrestrial and space experiments

Gravitational Waves Space Experiment

- LISA Laser Interferometer Space Antenna
 - » six spacecraft in triangle (four needed)
 - » pair at each vertex

LISA Annual Revolution

- 60 degree half opening angle
- 'tumbling' allows determination of position of source and polarization of wave

LIGO-G960108-00-M

Gravitational Waves International Effort

- Techniques
 - » Resonant Bar Detectors (LSU, Rome, etc)
 - narrow band
 - » Large Scale Interferometers
 - broad band

International Interferometer Effort

- » U.S. -- LIGO (Two Sites)
 - Caltech & MIT (Wash and Louisiana)
- » Europe -- VIRGO (One Site)
 - French and Italian (near Pisa)
- » Smaller efforts
 - Germany, Japan, Australia
- Time Scale (Interferometers)
 - » Approximately year 2000

Gravitational Waves *Resonant Bar Detector*

Schematic Version

LIGO-G960116-00-M

Gravitational Waves *Resonant Bar Detection*

Bar detector

Group	Antenna	Transducer	Sensitivity (h)
CERN/Rome	Al5056, 2.3ton, 2.6K	Capacitive+SQUID	7×10^{-19}
CERN	Al5056, 2.3ton, 0.1K	Capacitive+SQUID	2×10^{-18}
LSU(USA)	Al5056, 1.1ton, 4.2K	Inductive+SQUID	7×10^{-19}
Stanford	Al6061, 4.8ton, 4.2K	Inductive+SQUID	10^{-18}
UWA(Australia)	Nb, 1.5ton, 5K	RF cavity	9×10^{-19}
ICRR(Japan)	Al5056, 1.7ton, 300K	Laser Transducer	_
RER(Japan)	A15056, 1.2ton, 4.2K	Capacitive+FET	4×10^{-22} (60Hz)

Status of bar detectors

LIGO-G960116-00-M

SCHEMATIC INTERFEROMETRIC DETECTOR

Untitlea - 5

LIGO Achieving 10⁻¹⁸ m Sensitivity

- » Mirrors and light beam must be in vacuum
- Mirror's atoms vibrate (thermal noise)
 - » light beam feels 10¹⁸ atoms
 - » atoms vibrate fast: ~10¹³ Hz
 - » beam measures slow variables: ~ 100 Hz
- Earth vibrates and shakes mirrors
 - » anti-vibration suspension
 - » quiet environment

1

Noise Budget For First LIGO Detectors

- 5 Watt Laser
- Mirror Losses 50 ppm
- Recycling Factor of 30
- 10 kg Test Masses
- Suspension Q=10⁷

Neutron Star Binary Coalescence

<u>Method</u>	<u>Our</u> <u>Galaxy</u>	<u>Distance for</u> <u>3/yr</u>
Progenitor Death Rate	~1/1000 yr	130 M.L.yr
Binary Pulsar Searches and Discoveries	~1/10 ^{5±1} yr	600 M.L.yr.
Ultra-conservtive Limit from Binary Pulsar Searches	~1/10 ⁷ yr	3000 M.L.yr

LIGO Scientific Mission

Direct Detection of Gravitational Waves

- Benchmark Source: Neutron Binary Coalescence
 - Detect the last 15 minutes of Hulse/Taylor type binary system (eg. 100 million years)
 - Sensitivity -- detection rate >3 year
- Other Sources
- Fundamental Physics (GR)
 - » Test General Relativity in Strong Field and High Velocity Limit
 - » Measure Polarization and Propagation Speed

LIGO-G960108-00-M

Neutron Binary Systems

Inspiral

- LIGO frequency band
 » last 15 minutes (~10⁴ cycles)
- 'Chirp Signal'
- Detailed waveform gives masses, spins, distance, eccentricity of orbit, etc

LIGO-G960115-00-M

J....

1.1.1

1

· · · · · · · · · · · · · · · · · · ·		· · · ·
	LIGU	
	Long Popa	Gaale
	LUNY nanye	, GUAIS
	and and a second se And a second s	
	Final Coalescence of	Binary Systems
	» Neutron Star/Neutron-Sta	ar
	- Design Benchmark	last_15 min
	Besign Denominanti	20.000 cvcles
		600 MLvr
	» Black-hole/Black-hole	· · · · · · · · · · · · · · · · · · ·
	» Block hole/Neutron-Star-	
	» Didek-Hele/Neutron Otal	· · · · · · · · · · · · · · · · · · ·
	-	
···· · · · · · · · · · · · · · · · · ·	Supernovae	-
	» Axisymmetric in our galax	xy
	» Non-axisymmetric ~300N	ALyr
		•
. 	·	
	Early Universe	
<u> </u>	» Vibrating Cosmic Strings	
	» Vacuum Phase Transitio	ns
	» Vacuum Eluctuations from	m Planck Era
\bullet	Unknown Sources	

BLACK HOLE BINARIES

Stochastic Gravity-Wave Background

 could come from early Universe LIGO Band ~ 10⁻²² sec
 (also could be overwhelmed by more recent sources)

• graviton background analogous to Sem THERMAL SPECTRUM Trogog Ko (smaller then Cosmic Microwave Background Radiation because in conventional Rediation beconvention because in conventional Rediation because in convention

ounlikely equilibrium was established since gravitational interactions so weak Itime required longer than expansion time

detection
 correlate (anticorrelate) signals
 from different detectors
 (eg <64H3 LIGO detectors correlated)

FIG. 1. A grey-scale rendering of the entropy distribution at the end of the simulation, about 50 milliseconds into the explosion. Note the pronounced pole-to-pole asymmetry in the ejecta and the velocity field (as depicted with the velocity vectors). The physical scale is 2000 km from the center to the edge. Darker color indicates lower entropy and $\theta = 0$ on the bulge side of the symmetry axis.

periodic sources

-periodic waveform (integrate for long tim

Simple model :

$$M = 1.4 M_{\odot}$$

$$r = 10 \text{ km}$$

$$T = 10 \text{ km}$$

$$T = 10^{45} \text{ gm cm}^2$$

$$\frac{1}{2}$$

Estimate distortion due to dipole magnetic field E = Umag = Ugrav $\frac{B^{*}R^{4}}{GM^{2}} = 10^{-12}$ (if) B= 1012 gauss (Aupril of pulsars) $h \approx 3 \log \left(\frac{f}{1 \, k H_3}\right) + \left(\frac{10 \, k p \, c}{R}\right)$ if pulsars born rapidly rotating then Severalst recent pulsars with such amplitude in our galaxy any time Note fastest known pulsar PSR1937+214 only has B = 10⁸ gauss, but it is thought this pulsar was 'spun up' by consuming low mass compension ALSO "Warrance star" enhousement.

Type I - explosive detonation of a white dwarf star (no substantial emission of gravitational waves)

Type II - may emit strong gravitational wayes

> 'naked eye' observations 16th century (Tycho) SN 1987A (neutrinos)

Gravitational radiation (mechanism) - massive stur produces core ~1.4 Mo

which has burned to woon (white dwarf)

- electron degeneracy pressure no longer can support the core
- matter converts into neutrons
- = collapses
- bounce @ nuclear densities (~310 gm/cm³)

FIG. 2. The inferred recoil speed (in km s⁻¹) imparted to the core versus time (in seconds) for the simulation highlighted in this paper. The initial momentum is approximately zero, but grows systematically after bounce in the direction opposite to the artificial wedge, cut into the core to mimic an asymmetry just before collapse. Shown are the total recoil (solid) and the contributions due to the neutrino emission anisotropy (dashed) and the ejecta motions (dotted).

FIG. 3. The gravitational wave strain, h_{zz}^{TT} , times the distance to the supernova, D, versus time (in seconds). Core bounce is at 0.215 seconds. The total. matter, and neutrino waveforms are rendered with the solid, dotted, and dashed lines, respectively.

UTHER FOSSIBLE DOURCES

SPINNING, "MOUNTAINOUS" NEUTRON STAR

Periodic

IMPLOSION OF A STAR'S CORE

THE BIG BANG SINGULARITY

LIGO 10 SPC Temp ~ 10 Gev graviton ~ 10 MeV 10-HSec Temp ~ 10²Gev (electronic 10-HSec Temp ~ 10²Gev (electronic (10⁻²H3) graviton ~ 1 keV

LIGO Sensitivity

LIGO The Project

- National Science Foundation
- Construction Project (1995-1999)
 - » Facilities and Initial Detector

Commission Facility (1999-2001)

- » Implement Initial Detectors
 - h ~ 10⁻²⁰ Coincidence
 - Initial Search (end of 2000)
 - $-h \sim 10^{-21}$ Initial Design Sensitivity (end 2001)

• Full Operations (2002 + ...)

- » Data Dating/Analysis
 - data collaboration with VIRGO
- » Enhance Initial Detector
 - incorporate outside collaborations
- » Advanced Detectors
 - Syracuse, Colorado, Stanford, etc
 - Caltech/MIT efforts

LIGO INTERFEROMETERS

Measured waveform, $h(time) = \Delta L/L$, is a linear combination of h_+ and h_X , which depends on interferometer's orientation

Gravitational Wave Detector

- Antenna Pattern
 - » coordinate system

Figure 2.7 The sensitivity, as a function of direction, of an interferometric gravitational wave detector to unpolarized gravitational waves. The interferometer arms are oriented along the x and y axes.

,

Untitled - 6

LIGO Site Pair

- Hanford, Washington
 - Located on U.S. Dept. of Energy Reservation
 - Treeless, Semi-arid Desert
 - Approx. 25 km from Richland (Metropolitan Pop. 140,000)
- Livingston, Louisiana
 - Located in Forested Rural Area
 - Approx. 50 km from Baton Rouge (Pop. 450,000)

Ann

LIGO

LOUISIANA

LIVINGSTON PARISH

ΙA

AERIAL PHOTO BY GULF COAST AERIAL MAPPING FLOWN: AUGUST 25. 1995 ALTITUDE: 12.000 FEET

:<u>,</u>, -

hui

۵۰ پ

Strain.

А. Э. С. Ч. У.

۰.

1

Ť

•

ANTR N

Conclusions

- LIGO Construction is well Underway
- Direct Detection of
 Gravitational Waves Appears
 Realistic within 10 years
- Ultimate Sensitivities
 Capable of Opening a New
 Field of Observational
 Astronomy with Gravitational
 Waves is the Long Term
 Goal.

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state