The Detection of Gravitational Waves

LIGO

Barry Barish *Rice University Nov 6, 1996*

LIGO-G0231-00-M

LIGO Introduction

- Laser Interferometer Gravitational Wave Observatory
 - » **DIRECT** Detection of Gravitational Waves
- Joint Caltech/MIT Project funded by the National Science Foundation
- Under Construction
 » Two Sites -- Louisiana and Washington

Gravitational vs E.M. Waves

	EM WAVES	GRAV. WAVES
Nature	Oscillation of EM Fields Propagating Through Spacetime	Oscillations of the "fabric" of spacetime
Emission Mechanism	Incoherent superposition of waves from molecules, atoms, particles	Coherent emission by bulk motion of energy
Interaction with Matter	Strong absorption and Scattering	Essentially None!
Frequency Band	f > 10 ⁷ Hz	f < 104Hz

Implications

- Most gravitational sources not seen as electromagnetic (and vice versa)
- Potential for great surprises
- Uncertainty in strengths of waves

Gravitational Wave Forces

IF

Detector Size << Wavelength</p>

(4 km)

(300-30,000km) (10 kHz - 10 Hz LIGO)

THEN

Quadrupolar Lines of Force

LIGO-G960108-00-M

Gravitational Waves *Two Polarizations*

LIGO-G960116-00-M

· ____

Gravitational Waves Effects

• Displacement of free particles

» h₊ polarization

Gravitational Waves Detection

Interferometer detector

LIGO-G960116-00-M

Gravitational Waves Evidence

- Russell Hulse and Joseph Taylor
- Neutron Binary System
 - » PSR 1913 + 16 -- Timing of Pulsars

Hulse and Taylor Timing of Orbit

- Speed up 10 sec in 15 years
 - » measured to ~50 μsec accuracy
- Deviation grows quadratically in time

 Due to loss of orbital energy, from emission of gravitational waves

-

Laboratory Experiment (a la Hertz)

Laboratory Dumbbell System

$$f_{rot} = 1 \text{ kHz}$$

 $h_{lab} = 2.6 \ 10^{-33} \text{ m x 1/R}$
 $R = \text{detector distance (> 1 wavelength)} = 300 \text{ km}$
 $h_{lab} = 9 \ 10^{-39}$

This is too weak by about 16 orders of magnitude!

LIGO-G960108-00-M

Gravitational Waves *Sources and Detection*

• binary star system

Sources	Frequency	h	Event Rate	Detection
Coalescing Binary Neu-	10~1000 Hz	10^{-22}	$\sim 3/year$	Interferometer
tron Stars (200 Mpc)				+Template
Supernovae	$\sim 1 \text{ kHz}$	10^{-18}	$\sim 3/century$	Interferometer,
(in our Galaxy)				Resonant
Supernovae (in Virgo)	$\sim 1 \text{ kHz}$	10^{-21}	several/year	Interferometer
Generation of Large	$\sim 1 \text{ mHz}$	10^{-17}	1/year	Interferometer
Black Holes				in Space
Pulsars	10~1000 Hz	10^{-25}	periodic	Interferometer,
				Resonant
Cosmic Strings	10^{-7} Hz	10^{-15}	stochastic	Pulsar Timing

sources and detection

Astrophysical Sources Frequency Range

- Electromagnetic Waves ~ 20 orders of magnnitude (ULF radio -> HE γ rays)
- Gravitational Waves ~ 10 orders of magnitude
- Combination of terrestrial and space experiments

Gravitational Waves Space Experiment

- LISA Laser Interferometer Space Antenna
 - » six spacecraft in triangle (four needed)
 - » pair at each vertex

LIGO-G960108-00-M

LISA Annual Revolution

- 60 degree half opening angle
- 'tumbling' allows determination of position of source and polarization of wave

LIGO-G960108-00-M

Gravitational Waves *Resonant Bar Detector*

Schematic Version

LIGO-G960116-00-M

Gravitational Waves *Resonant Bar Detection*

• Bar detector

Group	Antenna	Transducer	Sensitivity (b)
CERN/Rome	Al5056, 2.3ton, 2.6K	Capacitive+SOUID	7×10^{-19}
CERN	Al5056, 2.3ton, 0.1K	Capacitive+SOUID	7×10 2×10^{-18}
LSU(USA)	Al5056, 1.1ton, 4.2K	Inductive+SOUID	$\frac{2 \times 10}{7 \times 10^{-19}}$
Stanford	Al6061, 4.8ton, 4.2K	Inductive+SQUID	10-18
UWA(Australia)	Nb, 1.5ton, 5K	RF cavity	10^{-10}
ICRR(Japan)	Al5056, 1.7ton, 300K	Laser Transducer	9 X 10
KEK(Japan)	Al5056, 1.2ton, 4.2K	Capacitive+FET	- 4 × 10 ⁻²² (60 Hg)

Status of bar detectors

Gravitational Waves International Effort

Techniques

- » Resonant Bar Detectors (LSU, Rome, etc)
 - narrow band
- » Large Scale Interferometers
 - broad band

International Interferometer Effort

- » U.S. -- LIGO (Two Sites)
 - Caltech & MIT (Wash and Louisiana)
- » Europe -- VIRGO (One Site)
 - French and Italian (near Pisa)
- » Smaller efforts
 - Germany, Japan, Australia
- Time Scale (Interferometers)
 - » Approximately year 2000

SCHEMATIC INTERFEROMETRIC DETECTOR

LIGO Achieving 10⁻¹⁸ m Sensitivity

- » Mirrors and light beam must be in vacuum
- Mirror's atoms vibrate (thermal noise)
 - » light beam feels 10¹⁸ atoms
 - » atoms vibrate fast: ~1013 Hz
 - » beam measures slow variables: ~ 100 Hz
- Earth vibrates and shakes mirrors
 <u>anti-vibration suspension</u>
 - » guiet environment

LIGO-G960108-00-M

Noise Budget For First LIGO Detectors

- 5 Watt Laser
- Mirror Losses 50 ppm
- Recycling Factor of 30
- 10 kg Test Masses
- Suspension Q=10⁷

LIGO Scientific Mission

Direct Detection of Gravitational Waves

- Benchmark Source: Neutron Binary Coalescence
 - Detect the last 15 minutes of Hulse/Taylor type binary system (eg. 100 million years)
 - Sensitivity -- detection rate >3 year
- Other Sources
- Fundamental Physics (GR)
 - » Test General Relativity in Strong Field and High Velocity Limit
 - » Measure Polarization and Propagation Speed

Neutron Star Binary Coalescence

<u>Method</u>	<u>Our</u> Galaxy	<u>Distance for</u> <u>3/yr</u>
Progenitor Death Rate	~1/1000 yr	130 M.L.yr
Binary Pulsar Searches and Discoveries	~1/10 ^{⁵±1} yr	600 M.L.yr.
Ultra-conservtive Limit from Binary Pulsar Searches	~1/10 ⁷ yr	3000 M.L.yr

Neutron Binary Systems Inspiral

- LIGO frequency band
 - » last 15 minutes (~10⁴ cycles)
- 'Chirp Signal'
- Detailed waveform gives masses, spins, distance, eccentricity of orbit, etc

LIGO-G960115-00-M

ķ

1

x

LIGO Long Range Goals

Final Coalescence of Binary Systems

- » Neutron Star/Neutron Star
 - Design Benchmark:

last 15 min 20,000 cycles 600 MLyr

- » Black-hole/Black-hole
- » Black-hole/Neutron Star

- » Axisymmetric in our galaxy
- » Non-axisymmetric ~300MLyr
- Early Universe
 - » Vibrating Cosmic Strings
 - » Vacuum Phase Transitions
 - » Vacuum Fluctuations from Planck Era
- Unknown Sources

BLACK HOLE BINARIES

- Map of spacetime warpage
- Tornado-like swirl of space around big hole

 Nonlinear vibrations of spacetime [Compare with Grand Challenge Supercomputer Simulations]

UTHER FOSSIBLE DOURCES

SPINNING, "MOUNTAINOUS" NEUTRON STAR

Periodic

IMPLOSION OF A STAR'S CORE

- WHICH TRIGGERS A SUPERNOVA

Pulsars ration of y Proc -periodic waveform (integrate for long time) -rotating non-axisymmetric neutron stars Simple model : M= 1.4 Mo r = 10 km = 1045 gm cm2 4 K . STIG BIJ E = Squidorial ellipticity -Concorrection Karan

Estimate distortion due to dipole. magnetic field

 $\mathcal{E} \approx \bigcup_{mag} \approx \frac{\mathbf{B}^* \mathbf{R}^4}{\bigcup_{grav}} \approx \frac{\mathbf{B}^* \mathbf{R}^4}{\mathbb{R}^4} \approx 10^{-12}$

if Bar Ill' gauss Report of pulcars)

if pulsars born rapidly rotating then several isst recent pulsars with such amplitude in our galaxy any time

Note fastest known pulsar PSR1937+214 only has B = 10⁸ gauss, but it is thought this pulsar was 'spun up' by consuming low mass companion ALSO "Wagower star" enhancement. Supernovae

Type I - explosive detonation of a white dwarf star (no substantial emission of gravitational waves) Type I - may emit strong gravitational WAYES 'maked eye' observations 16th century (Tycho) SN 1987A (neutrinos) Gravitational radiation (mechanism) -massive star produces core ~1.4 Mm which has burned to woon (white dwarf) - electron degeneracy pressure no longer can support the core = matter converts into neutrons = collapses - bounce @ nuclear densities (~3 10 gm/cm³)

FIG. 2. The inferred recoil speed (in km s^{-1}) imparted to the core versus time (in seconds) for the simulation highlighted in this paper. The initial momentum is approximately zero, but grows systematically after bounce in the direction opposite to the artificial wedge, cut into the core to mimic an asymmetry just before collapse. Shown are the total recoil (solid) and the contributions due to the neutrino emission anisotropy (dashed) and the ejecta motions (dotted).

FIG. 3. The gravitational wave strain, h_{zz}^{TT} , times the distance to the supernova, D, versus time (in seconds). Core bounce is at 0.215 seconds. The total, matter, and neutrino waveforms are rendered with the solid, dotted, and dashed lines, respectively.
FIGURES

FIG. 1. A grey-scale rendering of the entropy distribution at the end of the simulation, about 50 milliseconds into the explosion. Note the pronounced pole-to-pole asymmetry in the ejecta and the velocity field (as depicted with the velocity vectors). The physical scale is 2000 km from the center to the edge. Darker color indicates lower entropy and $\theta = 0$ on the bulge side of the symmetry axis.

 could come from early Universe LIGO Band ~ 10⁻²² see
(also could be overwhelmed by more recent sources)

• graviton background analogous to Jem THERMAL SPECTRUM Trobotk (smaller than Cosmic Microwave Background Radiation because in

conventional that big bang model, gravitons decoupled when temperature of Universe dropped below Planck temp)

THE BIG BANG SINGULARITY

LIGO 10 Sec Temp ~ 10 Gev graviton ~ 10 MeV 10-Hsec Temp ~ 10²Gev (electrowle) (10⁻²Hz) graviton ~ 1 keV

LIGO Sensitivity

LIGO INTERFEROMETERS

Measured waveform, $h(time) = \Delta L/L$, is a linear combination of h_+ and h_x , which depends on interferometer's orientation

LIGO The Project

- National Science Foundation
- Construction Project (1995-1999)
 - » Facilities and Initial Detector
- Commission Facility (1999-2001)
 - » Implement Initial Detectors
 - $h \sim 10^{-20}$ Coincidence
 - Initial Search (end of 2000)
 - $h \sim 10^{-21}$ Initial Design Sensitivity (end 2001)

• Full Operations (2002 + ...)

- » Data Dating/Analysis
 - data collaboration with VIRGO
- » Enhance Initial Detector
 - incorporate outside collaborations
- » Advanced Detectors
 - Syracuse, Colorado, Stanford, etc
 - Caltech/MIT efforts

LIGO-G960108-00-M

Figure 2.7 The sensitivity, as a function of direction, of an interferometric gravitational wave detector to unpolarized gravitational waves. The interferometer arms are oriented along the x and y axes.

Gravitational Wave Detector

LIGO-G960116-00-M

Interferometers

• $\Delta L/L = h = F_+h_+(t) + F_xh_x(t)$

LIGO Measures <u>one</u> waveform

- » orientation aligned (Washington & Louisiana)
- » direction(timing) determined ~10' to ~ 1° on ring
- LIGO + VIRGO(Italy)
 - » decompose waveforms (h₊(t),h_x(t))
 - » direction 10' to 1°

Source Positions

 Celestial Sphere position location from LIGO (two interferometers)

- determine from time shift between detectors (~.1 msec accuracy)
- 'declination angle' of circle (ring)

$$\Theta = \arcsin \frac{c \Delta t_{sig}}{D}$$

LIGO-G960116-00-M

Source Positions LIGO + VIRGO

- LIGO (2 det) + VIRGO (1 det)
- decomposition of waveforms
 - » $h_x(t)$, $h_+(t)$
- position on sky (two positions)

Initial Interferometer Specifications

Strain Sensitivity [rms, 100 Hz band]	10-21
Displacement Sensitivity [rms, 100 Hz band]	4 x 10 ⁻¹⁸ <i>m</i>
Fabry-Perot Arm Length	4000 m
Vacuum Level	< 10 ⁻⁶ torr
Laser Wavelength	1064 <i>nm</i>
Optical Power at Laser Output	∙ 10 ₩
Optical Power at Interferometer Input	5 W
Power Recycling Factor	30
Input Mirror Properties	Reflectivity = 0.97
End Mirror Properties	Reflectivity > 0.9998
Arm Cavity Optical Loss	≤ 3%
Light Storage Time in Arms	1 <i>ms</i>
Test Masses	Fused Silica, 11 kg
Mirror Diameter	25 cm
Test Mass Period Pendulum	1 <i>sec</i>
Seismic Isolation System	Passive, 4 stage
Seismic Isolation System Horizontal Attenuation	≥ 10 ⁻⁷ (100 <i>Hz</i>)
Maximum Background Pulse Rate	1 per minute

LIGO-G960108-00-M

Initial Interferometers Noise Floor

LIGC

LIGO-G960108-00-M

. .

Phase Noise Sensitivity From MIT Interferometer

LIGO-G960208-00-M

.

["Near-Guaranteed" source]

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

Steps in the Advanced Subsystems Research

)

LIGO-G960209-00-M

h_{rms} Noise Envelopes for Initial LIGO and Advanced Subsystems/Detectors

.

·

.

Beam Tube

LIGO Facilities Beam Tube Enclosure

LIGO

LIVINGSTON PARISH

LOUISIANA

AERIAL PHOTO BY GULF COAST AERIAL MAPPING FLOWN: AUGUST 25, 1995 ALTITUDE: 12,000 FEET

G960028-17-O-V

Conclusions

LIGO Construction is well Underway

Direct Detection of
Gravitational Waves Appears
Realistic within 10 years

Utimate Sensitivities Capable of Opening a New Field of Observational Astronomy with Gravitational Waves is the Long Term Goal.

["Near-Guaranteed" source]

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state