# The Detection of Gravitational Waves

LIGO

Barry Barish *Kamiokande Seminar Nov 15, 1996* 



LIGO-G960236-00-M

## LIGO Introduction

- Laser Interferometer Gravitational Wave Observatory
  - » **DIRECT** Detection of Gravitational Waves
- Joint Caltech/MIT Project funded by the National Science Foundation
- Under Construction
  - » Two Sites -- Louisiana and Washington



## **LIGO** The Project

- National Science Foundation
- Construction Project (1995-1999)
  - » Facilities and Initial Detector

#### • Commission Facility (1999-2001)

#### » Implement Initial Detectors

- h ~ 10<sup>-20</sup> Coincidence
  - Initial Search (end of 2000)
- $-h \sim 10^{-21}$  Initial Design Sensitivity (end 2001)

#### • Full Operations (2002 + ... )

- » Data Dating/Analysis
  - data collaboration with VIRGO
- » Enhance Initial Detector
  - incorporate outside collaborations
- » Advanced Detectors
  - Syracuse, Colorado, Stanford, etc
  - Caltech/MIT efforts



BB

·



# **Gravitational vs E.M. Waves**

|                            | EM WAVES                                                                 | GRAV. WAVES                                      |
|----------------------------|--------------------------------------------------------------------------|--------------------------------------------------|
| Nature                     | Oscillation of EM<br>Fields Propagating<br>Through Spacetime             | Oscillations of the<br>"fabric" of spacetime     |
| Emission<br>Mechanism      | Incoherent superposition<br>of waves from molecules,<br>atoms, particles | Coherent emission<br>by bulk motion<br>of energy |
| Interaction with<br>Matter | Strong absorption and<br>Scattering                                      | Essentially None!                                |
| Frequency Band             | f > 107Hz                                                                | f < 104Hz                                        |

#### Implications

- Most gravitational sources not seen as electromagnetic (and vice versa)
- Potential for great surprises
- Uncertainty in strengths of waves



4/22/95

## **Gravitational Wave Forces**

#### IF

Detector Size << Wavelength (300-30,000km) (4 km)

(10 kHz - 10 Hz LIGO)

#### **THEN**



+ Polarization x Polarization



LIGO-G960108-00-M

#### **Gravitational Waves** *Two Polarizations*





LIGO-G960116-00-M

## Gravitational Waves Effects

سل

• Displacement of free particles



» h<sub>+</sub> polarization



#### Gravitational Waves Detection



Interferometer detector



LIGO-G960116-00-M

#### Gravitational Waves Evidence

Russell Hulse and Joseph Taylor

#### Neutron Binary System

» PSR 1913 + 16 -- Timing of Pulsars





£.

## Hulse and Taylor Timing of Orbit



 Due to loss of orbital energy, from emission of gravitational waves



LIGO-G960108-00-M

## Laboratory Experiment (a la Hertz)

#### Laboratory Dumbbell System



$$f_{rot} = 1 \text{ kHz}$$
  
 $h_{lab} = 2.6 \ 10^{-33} \text{ m x 1/R}$   
 $R = \text{detector distance (> 1 wavelength)} = 300 \text{ km}$   
 $h_{lab} = 9 \ 10^{-39}$ 

This is too weak by about 16 orders of magnitude!



LIGO-G960108-00-M

## **Gravitational Waves** *Sources and Detection*



#### binary star system

| Sources                | Frequency            | h          | <b>Event Rate</b> | Detection       |
|------------------------|----------------------|------------|-------------------|-----------------|
| Coalescing Binary Neu- | 10~1000 Hz           | $10^{-22}$ | $\sim 3/year$     | Interferometer  |
| tron Stars (200 Mpc)   |                      |            |                   | +Template       |
| Supernovae             | $\sim 1 \text{ kHz}$ | $10^{-18}$ | $\sim 3/century$  | Interferometer, |
| (in our Galaxy)        |                      |            |                   | Resonant        |
| Supernovae (in Virgo)  | ~1 kHz               | $10^{-21}$ | several/year      | Interferometer  |
| Generation of Large    | ~1 mHz               | 10-17      | 1/year            | Interferometer  |
| Black Holes            |                      |            |                   | in Space        |
| Pulsars                | 10~1000 Hz           | $10^{-25}$ | periodic          | Interferometer, |
|                        |                      |            |                   | Resonant        |
| Cosmic Strings         | $10^{-7}$ Hz         | 10-15      | stochastic        | Pulsar Timing   |

#### sources and detection

![](_page_13_Picture_5.jpeg)

1

#### Astrophysical Sources Frequency Range

- Electromagnetic Waves ~ 20 orders of magnnitude (ULF radio -> HE γ rays)
- Gravitational Waves ~ 10 orders of magnitude
- Combination of terrestrial and space experiments

![](_page_14_Figure_4.jpeg)

#### Gravitational Waves Space Experiment

- LISA Laser Interferometer Space Antenna
  - » six spacecraft in triangle (four needed)
  - » pair at each vertex

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

## LISA Annual Revolution

- 60 degree half opening angle
- 'tumbling' allows determination of position of source and polarization of wave

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

LIGO-G960108-00-M

#### **Gravitational Waves** *Resonant Bar Detector*

• Schematic Version

![](_page_17_Figure_2.jpeg)

## **Gravitational Waves** *Resonant Bar Detection*

![](_page_18_Figure_1.jpeg)

Bar detector

| Group          | Antenna              | Transducer       | Sensitivity (h)            |  |  |
|----------------|----------------------|------------------|----------------------------|--|--|
| CERN/Rome      | Al5056, 2.3ton, 2.6K | Capacitive+SQUID | $7 \times 10^{-19}$        |  |  |
| CERN           | Al5056, 2.3ton, 0.1K | Capacitive+SQUID | $2 \times 10^{-18}$        |  |  |
| LSU(USA)       | Al5056, 1.1ton, 4.2K | Inductive+SOUID  | $7 \times 10^{-19}$        |  |  |
| Stanford       | Al6061, 4.8ton, 4.2K | Inductive+SQUID  | 10-18                      |  |  |
| UWA(Australia) | Nb, 1.5ton, 5K       | RF cavity        | $9 \times 10^{-19}$        |  |  |
| ICRR(Japan)    | Al5056, 1.7ton, 300K | Laser Transducer | -                          |  |  |
| KEK(Japan)     | Al5056, 1.2ton, 4.2K | Capacitive+FET   | $4 \times 10^{-22}$ (60Hz) |  |  |

Status of bar detectors

![](_page_18_Picture_5.jpeg)

LIGO-G960116-00-M

L

## Gravitational Waves International Effort

#### Techniques

- » Resonant Bar Detectors (LSU, Rome, etc)
  - narrow band
- » Large Scale Interferometers
  - broad band

#### International Interferometer Effort

- » U.S. -- LIGO (Two Sites)
  - Caltech & MIT (Wash and Louisiana)
- » Europe -- VIRGO (One Site)
  - French and Italian (near Pisa)
- » Smaller efforts
  - Germany, Japan, Australia
- Time Scale (Interferometers)
  - » Approximately year 2000

![](_page_19_Picture_15.jpeg)

## SCHEMATIC INTERFEROMETRIC DETECTOR

![](_page_20_Figure_1.jpeg)

## LIGO Achieving 10<sup>-18</sup> m Sensitivity

![](_page_21_Figure_1.jpeg)

- » Mirrors and light beam must be in vacuum
- Mirror's atoms vibrate (thermal noise)
  - » light beam feels 10<sup>18</sup> atoms
  - » atoms vibrate fast: ~10<sup>13</sup> Hz
  - » beam measures slow variables: ~ 100 Hz
- Earth vibrates and shakes mirrors
  - » anti-vibration suspension
  - » quiet environment

![](_page_21_Picture_10.jpeg)

\_\_\_\_

#### Noise Budget For First LIGO Detectors

- 5 Watt Laser
- Mirror Losses 50 ppm
- Recycling Factor of 30
- 10 kg Test Masses
- Suspension Q=10<sup>7</sup>

![](_page_22_Figure_6.jpeg)

LIGO

## LIGO Scientific Mission

#### Direct Detection of Gravitational Waves

- Benchmark Source: Neutron Binary Coalescence
  - Detect the last 15 minutes of Hulse/Taylor type binary system (eg. 100 million years)
  - Sensitivity -- detection rate >3 year
- Other Sources

#### Fundamental Physics (GR)

- » Test General Relativity in Strong Field and High Velocity Limit
- » Measure Polarization and Propagation Speed

![](_page_23_Picture_9.jpeg)

LIGO-G960108-00-M

11-

## Neutron Star Binary Coalescence

| <u>Method</u>                                             | <b>Our</b><br>Galaxy    | Distance for<br>3/yr |
|-----------------------------------------------------------|-------------------------|----------------------|
| Progenitor Death<br>Rate                                  | ~1/1000 yr              | 130 M.L.yr           |
| Binary Pulsar<br>Searches and<br>Discoveries              | ~1/10 <sup>5±1</sup> yr | 600 M.L.yr.          |
| Ultra-conservtive<br>Limit from Binary<br>Pulsar Searches | ~1/10 <sup>7</sup> yr   | 3000 M.L.yr          |

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

۲

F161

![](_page_27_Figure_0.jpeg)

15 minutes &10,000 orbits in LIGO band

Rich information in waveforms: masses, spins, distance, direction, nuclear equation of state

## **LIGO** Long Range Goals

#### Final Coalescence of Binary Systems

- » Neutron Star/Neutron Star
  - Design Benchmark:

last 15 min 20,000 cycles 600 MLyr

- » Black-hole/Black-hole
- » Black-hole/Neutron Star

![](_page_28_Picture_7.jpeg)

- » Axisymmetric in our galaxy
- » Non-axisymmetric ~300MLyr

Early Universe

- » Vibrating Cosmic Strings
- » Vacuum Phase Transitions
- » Vacuum Fluctuations from Planck Era

Unknown Sources

![](_page_28_Picture_15.jpeg)

LIGO-G960108-00-M

SPINNING, "MOUNTAINOUS" NEUTRON STAR

![](_page_29_Picture_2.jpeg)

Periodic

IMPLOSION OF A STAR'S CORE

- WHICH TRIGGERS A SUPERNOVA

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

Spin "gravizomagnezic field" dragging) bons of grbit Morrapidly spinning BA 1 Mo BH 0° Orbital Inclination -nspiral Waveform 13 Hz 58 Hz 267 Ha 100 30 0.1 0.03 0.3 3 time to coalescence, sec

# TWO WAVEFORMS [Stereophonic]

![](_page_31_Figure_1.jpeg)

**BLACK HOLE BINARIES** 

![](_page_32_Picture_1.jpeg)

![](_page_32_Figure_2.jpeg)

Pulsars  
periodic sources  
-periodic waveform (integrate for long time)  
-rotating non-axisymmetric neutron stars  
Simple model :  

$$M = 1.4 M_0$$
  
 $r = 10 \text{ km}$   
 $I = 10 \text{ km}$   
 $I = 10 \text{ km}$   
 $f = 10 \text{ km}$ 

Estimate distortion due to dipole magnetic field

- $\varepsilon \approx \frac{U_{mag}}{U_{grav}} \approx \frac{B^2 R^4}{G M^2} \approx \frac{-12}{10}$
- (if) B = 10<sup>12</sup> gauss (typical of pulsars)
  - $h \approx 3 \log \frac{f}{1 \text{ kH}_3} + \left(\frac{10 \text{ kpc}}{R}\right)$
- (if pulsars born rapidly rotating then several most recent pulsars with such amplitude in our galaxy any time
  - Note fastest known pulsar PSR1937+214 only has B = 10<sup>9</sup> gauss, but it is thought this pulsar was 'spun up' by consuming low mass companion ALSO "Wagoner star" enhancement.

Type I - explosive detonation of a white dwarf star (no substantial emission of gravitational waves)

<u>Type II</u> - may emit strong gravitational wayes

> 'maked eye' observations 16th century (Tycho) SN 1987A (neutrinos)

- -massive star produces core ~1.4 Mo
  - which has burned to iron (white dwarf)
- electron degeneracy pressure no longer can support the core
- matter converts into neutrons
- collapses
- bounce @ nuclear densities (n3 10 gm/cm<sup>3</sup>)

|                                       |                          |                                          |              |                               | ~        | •                                       |                   |                                          |            |                    |            |          | -       | _       |
|---------------------------------------|--------------------------|------------------------------------------|--------------|-------------------------------|----------|-----------------------------------------|-------------------|------------------------------------------|------------|--------------------|------------|----------|---------|---------|
|                                       | FT                       | l                                        |              |                               |          | Т                                       |                   |                                          |            | T                  | 1 1.       | ]        |         |         |
|                                       | <u> </u>                 |                                          |              |                               |          |                                         |                   |                                          |            |                    | •<br>••    | ]        |         |         |
| (s)                                   |                          |                                          |              |                               |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\sim$            | ~~~~                                     | ~          |                    |            |          |         |         |
| (ku                                   | <u> </u>                 |                                          |              |                               |          |                                         |                   | •                                        |            | 1                  |            |          |         |         |
|                                       |                          |                                          |              |                               | Tota     | al                                      |                   | an a ann an a | V          | 1                  |            |          |         |         |
| >                                     | -                        |                                          | *****        |                               | Neu      | ter<br>Itrinos                          | 3                 |                                          | •          |                    |            |          |         |         |
| coil                                  |                          |                                          |              |                               | <u></u>  |                                         |                   |                                          |            | $\mathbb{M}$       |            | ·1       |         |         |
| <u> </u>                              |                          |                                          |              |                               |          |                                         |                   |                                          |            | $-\mathcal{M}_{1}$ | · _        |          |         |         |
| · · · · · · · · · · · · · · · · · · · |                          |                                          |              |                               |          |                                         |                   |                                          |            |                    | · · /      | -        |         |         |
|                                       | L                        | 11                                       | 1 1          | <u> </u>                      |          |                                         |                   |                                          |            |                    |            |          |         |         |
|                                       | 0                        |                                          |              |                               | .1       |                                         |                   | .2                                       |            |                    |            |          |         |         |
|                                       |                          | •                                        |              | <b>p</b> -                    | Ti       | me (s                                   | ec)               |                                          |            |                    | ···· /···· | · ·      |         |         |
| FIG. 2.                               |                          | interrec                                 | a recoil :   | speed                         | (in km   | s ·) im                                 | momo              | to the (                                 | core ve    | ersus ti           | ime (in s  | seconds  | ) IOT   |         |
| systematic                            |                          | fter bo                                  |              | the di                        | rection  | opposit                                 | e to th           | e artifi                                 | cial w     | edge. o            | ut into    | the cor  | e to    | <b></b> |
| mimic an a                            | asymn                    | netry ju                                 | nsk belied   | e colla                       | upse. Sl | iown ar                                 | e the to          | tal rec                                  | oil (so    | lid) an            | d the co   | atribut  | ions    |         |
| due to the                            | neutr                    | ino em                                   | ission a     | uset <i>re</i>                | 99 (das  | ihed) as                                | d the e           | jecta a                                  | notion     | s (dott            | ed).       | •        |         | -       |
|                                       |                          |                                          |              | a., ay akarama kana dapa 1994 |          |                                         |                   |                                          | <b>.</b> . |                    | •          | -'       |         |         |
|                                       | max - universitation ar- |                                          |              |                               |          |                                         |                   |                                          |            |                    |            | ···· • • | a ava • |         |
|                                       |                          | na an a |              |                               |          |                                         |                   |                                          |            |                    |            |          |         |         |
|                                       |                          | 464                                      |              |                               |          |                                         |                   |                                          |            |                    |            |          |         |         |
|                                       |                          |                                          |              |                               |          |                                         |                   |                                          |            |                    |            | '        |         |         |
|                                       |                          |                                          |              |                               |          |                                         |                   |                                          |            |                    |            |          |         |         |
|                                       |                          |                                          |              |                               |          |                                         |                   | · · · ·                                  |            |                    |            | f        |         |         |
|                                       |                          |                                          |              |                               |          |                                         | 5. 1001-0015 Made | +- *                                     |            |                    |            |          |         |         |
| ,<br>                                 |                          |                                          |              |                               |          |                                         |                   |                                          | •          |                    | -          | • ;      |         |         |
|                                       |                          |                                          | . <u>.</u> . |                               |          |                                         |                   | - •                                      |            | -                  |            | · ·      |         |         |
| ~~                                    |                          |                                          |              |                               |          | 10                                      |                   |                                          |            |                    |            | _        |         |         |
|                                       |                          |                                          |              |                               |          | 12                                      |                   |                                          |            |                    |            | ·        |         |         |

\* Physics modeling very difficult (departure from spherical shape) guidance (unclear) - supercomputers assume spherical sym. - 2D models (Burrows) - Crab pulsar frot = 30.3 Hz J = 2 1047 erg-jec (Saonz-Shoyiro -> rediate gravitational 3 10t of rest mass 4= 10-23 @ VIR60 - Collapsing cores w/ high angular momentum? (eg "millisecond pulsars)

| 50 r                                    |                                         |                  |                                         |                                         |                                       | i .                                   |
|-----------------------------------------|-----------------------------------------|------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|
|                                         |                                         |                  | •••••••                                 |                                         |                                       | •••• · ·                              |
| $\sim$ 0                                |                                         | m                | $\sim$                                  | ··· · · · · · · · · · · · · · · · · ·   |                                       | ·· ··· ·                              |
| (cm                                     |                                         | ·√               |                                         | Total                                   | -                                     |                                       |
|                                         |                                         |                  |                                         | Matter                                  | · · · · · · · · · · · · · · · · · · · | -                                     |
| 습 <sub>-50</sub>                        |                                         | A                |                                         | Neutrinos                               |                                       |                                       |
|                                         |                                         | M                |                                         |                                         |                                       |                                       |
| · · · · · · · · · · · · · · · · · · ·   | - · · · · · · · · · · · · · · · · · · · |                  | ~                                       |                                         |                                       |                                       |
| -100                                    |                                         | · · ·            |                                         |                                         |                                       | · · · · · · · · · · · · · · · · · · · |
|                                         | -<br>                                   | A                |                                         |                                         |                                       | ;<br>;<br>                            |
|                                         | ,<br>,                                  | 22               | .24                                     | .20                                     | .20                                   | )                                     |
| FIC 1                                   | The gravitation                         | al wave strain.  | $h^{TT}$ , times th                     | e distance to the                       | supernova, l                          | ), versus                             |
| time (in se                             | coads). Core bot                        | ince is at 0.215 | <b>seconds</b> . The                    | total, matter, and                      | l neutrino w                          | aveforms                              |
| are rendere                             | d with the solid,                       | dotted, and da   | shed lines, resp                        | ectively.                               |                                       |                                       |
|                                         |                                         |                  |                                         |                                         |                                       |                                       |
| · · · · · · · · · · · · · · · · · · ·   |                                         |                  | · - · · · · · · · · · · · · · · · · · · |                                         |                                       |                                       |
| ··· · · · · · · · · · · · · · · · · ·   |                                         | <u></u>          |                                         | ·· ··· · · · · ·                        |                                       |                                       |
| · - · · · · · · · · · · · · · · · · · · |                                         |                  |                                         |                                         | ····                                  |                                       |
| · · · · · · · · · · · · · · · · · · ·   |                                         |                  |                                         | ter an contra ter a contra ter          |                                       | •••••••                               |
| ···· ·· ·· · · · · · ·                  |                                         | <u></u>          |                                         | · · · · · · · ·                         |                                       | •• •• • • • • • • • • •               |
| · · · · · · · · · · · · · · · · · · ·   |                                         |                  | ····                                    | - · · · · · · · · · · · · · · · · · · · |                                       | ·                                     |
| · · ·                                   |                                         |                  |                                         |                                         |                                       | ···· ·· ·· ··                         |
| · ···· · · · · · · · · · · · · · · · ·  |                                         | · · · · ·        |                                         | ······                                  |                                       | ····                                  |
|                                         | -                                       |                  |                                         |                                         |                                       |                                       |
|                                         |                                         |                  |                                         |                                         |                                       |                                       |

•

#### FIGURES

![](_page_39_Picture_1.jpeg)

FIG. 1. A grey-scale rendering of the entropy distribution at the end of the simulation, about 50 milliseconds into the explosion. Note the pronounced pole-to-pole asymmetry in the ejecta and the velocity field (as depicted with the velocity vectors). The physical scale is 2000 km from the center to the edge. Darker color indicates lower entropy and  $\theta = 0$  on the bulge side of the symmetry axis.

3-4

• could come from early Universe LIGO Band ~ 10<sup>-22</sup> sec (also could be overwhelmed by more recent sources)

• graviton background analogous to Jem THERMAL SPECTRUM Trog K. (smaller then Cosmic Microwave Background Radiation because in conventional Ret big bang model, gravitons decoupled when tempenature of Universe dropped below Planck temp)

HE BIG BANG SINGULARITY

![](_page_41_Figure_1.jpeg)

Lecture B

come into being

LIGO 10 Sec Temp ~ 10 Gev graviton ~ 10 MeV 10-Hsec Temp ~ 10<sup>2</sup> Gev Lelectrowle (10<sup>-2</sup>Hz) graviton ~ 1 keV

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

Michelson, Mon. Not. Roy, Astron Soc 227 (1987)933. Christensen, Phys. Rev. <u>D46</u> (1992) 5250. Flenagan, Phys. Rev. <u>D48</u> (1993) 2389

# LIGO INTERFEROMETERS

![](_page_44_Figure_1.jpeg)

Measured waveform,  $h(time) = \Delta L/L$ , is a linear combination of  $h_+$  and  $h_X$ , which depends on interferometer's orientation

## Gravitational Wave Detector

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

LIGO-G960116-00-M

![](_page_46_Figure_0.jpeg)

Figure 2.7 The sensitivity, as a function of direction, of an interferometric gravitational wave detector to unpolarized gravitational waves. The interferometer arms are oriented along the x and y axes.

![](_page_47_Picture_0.jpeg)

#### Source Positions LIGO + VIRGO

- LIGO (2 det) + VIRGO (1 det)
- decomposition of waveforms
  - »  $h_x(t)$ ,  $h_+(t)$
- position on sky (two positions)

![](_page_48_Figure_5.jpeg)

![](_page_48_Picture_6.jpeg)

#### Interferometers

. .

![](_page_49_Picture_1.jpeg)

![](_page_49_Picture_2.jpeg)

LIGO-G960115-00-M

![](_page_50_Figure_0.jpeg)

## Initial Interferometer Specifications

| Strain Sensitivity [rms, 100 Hz band]              | 10-21                               |  |  |  |  |
|----------------------------------------------------|-------------------------------------|--|--|--|--|
| Displacement Sensitivity [rms, 100<br>Hz band]     | 4 x 10 <sup>-18</sup> m             |  |  |  |  |
| Fabry-Perot Arm Length                             | 4000 <i>m</i>                       |  |  |  |  |
| Vacuum Level                                       | < 10 <sup>-6</sup> torr             |  |  |  |  |
| Laser Wavelength                                   | 1064 nm                             |  |  |  |  |
| Optical Power at Laser Output                      | • 10 W                              |  |  |  |  |
| Optical Power at Interferometer Input              | 5 W                                 |  |  |  |  |
| Power Recycling Factor                             | 30                                  |  |  |  |  |
| Input Mirror Properties                            | Reflectivity = 0.97                 |  |  |  |  |
| End Mirror Properties                              | Reflectivity > 0.9998               |  |  |  |  |
| Arm Cavity Optical Loss                            | ≤ 3%                                |  |  |  |  |
| Light Storage Time in Arms                         | 1 <i>ms</i>                         |  |  |  |  |
| Test Masses                                        | Fused Silica, 11 kg                 |  |  |  |  |
| Mirror Diameter                                    | 25 cm                               |  |  |  |  |
| Test Mass Period Pendulum                          | 1 sec                               |  |  |  |  |
| Seismic Isolation System                           | Passive, 4 stage                    |  |  |  |  |
| Seismic Isolation System Horizontal<br>Attenuation | ≥ 10 <sup>-7</sup> (100 <i>Hz</i> ) |  |  |  |  |
| Maximum Background Pulse Rate                      | 1 per minute                        |  |  |  |  |

![](_page_51_Picture_2.jpeg)

LIGO-G960108-00-M

#### **Initial Interferometers** Noise Floor

![](_page_52_Figure_1.jpeg)

LIGO

LIGO-G960108-00-M

![](_page_54_Figure_0.jpeg)

#### **Initial LIGO Noise Sources**

(April 8th 1996 Parameter Set)

![](_page_55_Figure_2.jpeg)

#### LIGO Systems Engineering and Integration 40 m Lab

![](_page_56_Figure_1.jpeg)

![](_page_56_Picture_2.jpeg)

![](_page_56_Picture_3.jpeg)

#### Phase Noise Sensitivity From MIT Interferometer

![](_page_57_Figure_1.jpeg)

![](_page_57_Picture_2.jpeg)

LIGO-G960208-00-M

•

.

. .

![](_page_59_Figure_0.jpeg)

~\*\*

#### Steps in the Advanced Subsystems Research

![](_page_60_Figure_1.jpeg)

![](_page_60_Picture_2.jpeg)

LIGO-G960209-00-M

## Enhanced Interferometer Noise Budget

![](_page_61_Figure_1.jpeg)

![](_page_61_Picture_2.jpeg)

#### **LIGO** Sensitivity

![](_page_62_Figure_1.jpeg)

## **LIGO Facilities** *Limiting Noise Floor*

![](_page_63_Figure_1.jpeg)

![](_page_63_Picture_2.jpeg)

LIGO-G960108-00-M

## Conclusions

- LIGO Construction is well Underway
- Direct Detection of
   Gravitational Waves Appears
   Realistic within 10 years
- Ultimate Sensitivities
  Capable of Opening a New
  Field of Observational
  Astronomy with Gravitational
  Waves is the Long Term
  Goal.

![](_page_64_Picture_4.jpeg)