

Thermal Compensation in Stable Recycling Cavity

UF LIGO Group Muzammil A. Arain

21/03/2006 LSC Meeting 2006

LIGO-G060155-00-Z

Table of Contents

- Stable vs. Unstable Recycling Cavities
- Design of Stable Recycling Cavity- Review
- Thermal Compensation in Advanced LIGO
 - » Design Options
 - » Substrate Compensation
 - Negative *dn/dT* Approach
 - » Surface Compensation
 - Adaptive Mode Matching in Recycling Cavity
 - Compensation Scheme
 - Experimental Demonstration
 - » Reduced Beam Size Option
- Summary

Advanced LIGO – arm cavities

LIGO

- Optimize interferometer contrast
- Optimize mode matching(?)

Adv. LIGO Marginally Stable Recycling Cavities

V₀₀ ∏

W₀₀

Marginally stable Recycling Cavities:

- All spatial modes of RF-sidebands resonant (current design: mode separation ≈ 4 kHz)
- Major loss mechanism for sidebands in TEM_{00} -mode
 - Loss of up to 30%-50%
 - (Also for signal sidebands!)
- Impact on LSC and ASC

U₀₀ //

Adv. LIGO Stable Recycling Cavities

- Only fundamental mode of RF-sidebands
 resonant
- Higher order modes suppressed
- Strongly reduces losses of TEM₀₀-mode
- (Better performance for signal sidebands)
- Expect improved LSC, ASC, and even Bull's eye (mode matching) signals
- Interferometer will be much easier to understand and debug

Power Recycling Cavity Cold State

Parameter	Unit	Value
MC Waist	mm	2.113
MC Waist LocPR ₁	m	2.0
PR ₁ ROC	m	-128.895
PR ₁ - PR ₂	m	16.655
PR ₂ ROC	m	1.524
Beam Size @ PR ₂	mm	3.567
$PR_2 - PR_3$	m	16.655
PR ₃ ROC	m	31.384
Beam Size @ PR ₃	cm	7.23
PR ₃ –ITM	m	24.995
Beam Size @ ITM	cm	7.10
ITM ROC	m	2037.5
Mode Matching	-	1.0

Hot Operation @ 120 W

6 cm Beam Size and 0.5 ppm Loss in ITM

Thermal Lensing in ITM

Surface Deformation (64.76 km Thermal Lens, 12 th Degree Polynomial Fit to H-Vinet Theory)

Thermal Aberrations (12 th Degree Polynomial Fit to H-Vinet Theory)

Calculate Overlap Integral b/w E_2 and E_3 and maximize it w.r.t. the ROC of thermal lens to get the optimal value

The Solution

An analytical solution is difficult however a numerical solution can be obtained. The curve is a parabola like shape and the vertex gives you the optimal value.

Valid Only for
$$(s(x) - A_{opt}x^2) << \lambda$$

Solution: Numerical Integration

$$I(A) = \left(\frac{2}{\pi}\right)^{1/2} \frac{1}{w(z)} \int_{-\infty}^{\infty} e^{-x^2 \left[\frac{2}{w^2(z)}\right]} e^{i \left[\frac{4\pi}{\lambda_1} s(x) - \frac{\pi}{\lambda} 4A_{opt} x^2\right]} dx$$

Various Approximations for ITM

Overlap Integral (1-D)

Various Approximations for Substrate

Overlap Integral (1-D)

Thermal Lens in ITM

Mathad	Thermal	ROC _{cold}	Cold Beam Size	Losses
Methou	ROC(Km)	(m)	(cm)	%
A_2 of 12^{th} Pol.	64.768	2012.46	9.29	0.48
A_2 of 8 th Pol.	77.013	2022.45	8.04	0.23
Exact Sol.	110.10	2038.54	7.05	0.06

Thermal Lens in Substrate

Method	Thermal ROC(Km)	Losses %
A_2 of 12^{th} Pol.	4.091	37.43
A_2 of 8 th Pol.	4.890	21.29
Exact Sol.	6.42	10.52

Hot Operation @ 120 W

Compensation Plate for Substrate Compensation

Negative dn/dT Compensation

LIGO

Option 1: Negative dn/dT

- Active Compensation
- Requirements:
 - » CO₂ laser system for surface heating
 - » Availability in Large Size
 - » Purity/homogeneity
- Advantages:
 - » Works without any doubt, trick is use same beam size as ITM
 - » Requires very low power (< 2W)
 - » Highly Efficient/Adaptive
- Disadvantages:
 - » New material
 - » A lot of Data and tests needed
 - » Requires coating on both surfaces

- Passive Compensation
- Requirements:
 - » Availability in Large Size
 - » Purity/homogeneity
 - » Exact Size absorption values
- Advantages:
 - » No laser needed
 - » Highly Efficient
 - Analogous to compensation in Faraday Rotator
- Disadvantages:
 - » New material
 - » A lot of Data and tests needed
 - » Less Adaptive
 - » Requires coating on both sides

Does such a material Exists ??

Combination of Two is essential due to substrate heating at 1064 nm

Potassium Bromide, Initial Choice

• Important Properties (KBr):

Product Name: 1.5441 Potassium Bromide (KBr) Transmission Range: 0.23 to 25 µm Refractive Index: $T - (n-1)\alpha_{8.3\%}^{1.527} = 70.473 \times 10^{-6} / ^{0}C$ Reflection Loss: 8.3% at 10 µm Absorption = 0.6002 and 1 mReststrahlen Peak: 77.6 µm dNødT: K_t = 4.816 W-mns³ x 0¹⁶/@ 319K dN/du: 4.2 µm Density: 2.753 a/cc 730°C Melting Point: Thermal Conductivity: 4.816 W m⁻¹ K⁻¹ @ 319K 43 x 10⁻⁶ /°K @300K Thermal Expansion: Knoop 7 in <100> with 200g indenter Hardness: Specific Maparate Internet Properties (Fused Silica): Dialectric Constant: 4.9 @ 1MHz Youngs Modulus (E):497 @ 26.8064 nm Shear Modulus (G): 5.08 GPaBurk Modulus (k): $= 8.7 \times 119.03 \text{ GPa}$ Elastic Coefficients: $\times 10^{-7.1}$ = 34.5 C12=5.4 C44=5.08 Apparent Elastic Emit: $\times 10^{-7.1}$ 1.1 MPa (160psi) Poisson Ratio: Solubility: DSorption = $\frac{2203}{53.48g/100g}$ water at 273K Molecular Weight: 1.37 W n119101 -1 Class/Structure: Cubic FCC, NaCl, Fm3m, (100) cleavage

- Normally used in IR Spectrometers
- Available in large sizes
- Crystalline in nature
- Soluble in water

A Typical Example 6.42 km Thermal Lens in Substrate

- Crystal Thickness = 2.05 mm
- Coating Absorption = 2.0 W
- Uncompensated Losses = 11%
- After Compensation = 0.001%

LIGO

Other Options for Compensation

- Option 2: Ring Heaters
- General Comments
 - » Easy to control electrical power
 - » Sensitive to geometry
 - » Requires relatively high power
 - Compensating a lens of 6.8 km in substrate might be too much for ring heaters
 - » Increases the temperature

Further Considerations for Experts

- Annular Heating
- General Comments
 - » Established technique
 - » Probably will require less power as compared to Ring Heaters
 - » Silica can be used as compensation plates
 - » No new material is required
 - Still needs an extra laser and related control like negative *dn/dT*
 - » Less efficient than negative *dn/dT* method

- 1. Highly variable due to coating variations
- 2. Differential Variations can be severe
- 3. Changes the mode in the arm cavity and mode matching can decrease to 96% without correction
- 4. Can cause contrast defects

LIGO

Adaptive Mode Matching

Power Recycling cavity Cold State

Parameter	Unit	Value
MC Waist	mm	2.113
MC Waist LocPR ₃	m	2.0
PR ₁ ROC	m	-128.895
PR ₁ - PR ₂	m	16.655
PR ₂ ROC	m	1.524
Beam Size @ PR ₂	mm	3.567
$PR_2 - PR_3$	m	16.655
PR ₃ ROC	m	31.384
Beam Size @ PR ₃	cm	7.23
PR ₃ –ITM	m	24.995
Beam Size @ ITM	cm	7.10
ITM ROC	m	2037.5
Mode Matching	-	1.0

Compensation Scheme for Adaptive Mode Matching – Hot Case

Parameter	Unit	Hot Value
MC Waist	mm	2.113
MC Waist LocPR ₁	m	2.0
PR ₁ ROC	m	-128.895
PR ₁ - PR ₂	m	16.655
PR ₂ ROC	m	1.783
Beam Size @ PR ₂	mm	3.567
$PR_2 - PR_3$	m	16.655
PR ₃ ROC	m	31.1217
Beam Size @ PR ₃	cm	6.09
PR ₃ –ITM	m	24.995
Beam Size @ ITM	cm	6.00
ITM ROC	m	2076.0
Mode Matching	-	1.0

ITM surface (i.e., 0.5 ppm, ITM ROC 2076 m)

Compensation Scheme for Adaptive Mode Matching- Cold Case

Parameter	Unit	Value
MC Waist	mm	2.113
MC Waist LocPR ₃	m	2.0
PR ₁ ROC	m	-128.895
$PR_1 - PR_2$	m	16.655
PR ₂ ROC	m	1.524
Beam Size @ PR ₂	mm	3.567
$PR_2 - PR_3$	m	16.655
PR ₃ ROC	m	31.384
Beam Size @ PR ₃	cm	7.23
PR ₃ –ITM	m	24.995
Beam Size @ ITM	cm	7.10
ITM ROC	m	2037.5
Mode Matching	-	1.0
Correction @ PR ₂	m	10.49
Correction @ PR ₃	Km	3.72
Beam Size @ PR ₂	mm	3.567

7.10

cm

Beam Size @ PR₃

Details of Adaptive Correction PR Cavity Designed for Hot Case

• Correction @ PR₂

- Requires a 10 m converging lens at 3.5 mm as we move from hot to cold case
- » Easily achievable by using CO₂ heating
- » Experimental demonstration in progress

- Correction @ PR₃
 - » Requires a 3.4 km diverging lens at 7.1 cm beam size as we move from cold to hot case
 - Proposed locations are substrate of PR₃ or separate plate before beam splitter
 - No higher order losses in the hot state
 - » 10% higher order losses in the cold state
 - » Cold state losses can be decreased by using CO₂ beam of larger size

10 m focal length lens at 1.2 W of surface heating at 1.8 mm probe beam and 1.0 cm heating beam

Problems/Concerns

- CO₂ beam power stability
- 'Beam Walking' Problem
- Beam Pointing Stability
- Geometrical Considerations

Inherently 'Athermal' Cavity

Reduce the Beam Size Increase the ROC

Reduced beam Size Operation

- No Correction Required
- Thermally Stable
- No differential problems

- Increased Noise
- Reduces Sensitivity
- Deviates from 6.0 cm magical beam size value ??

Thermally Insensitive Operation at Reduced Beam Size

- Hot ROC = 2137 m, Cold ROC = 2096.27m
- Beam Size = 5.7 cm
- No Correction Required
- More Stable

Thermal Noise Considerations

- 1. Thermoelastic noise scales as $1/(beam size)^{3/2}$, not thermal noise
- 2. Thermoelastic noise is a minor contributor to the total thermal noise
- 3. Total Noise does not scale as 1/(beam size)^{3/2} of beam size

Comparison of Total Noise

Maximum hit of 4.5 % at 64 Hz Is it acceptable??

Can we sacrifice a little sensitivity ??

Summary/Recommendations

