03-22-2006

S4 ASI Veto for Inspiral Analysis

Jacob Slutsky Louisiana State University Detector Characterization Session

Overview

- Motivation
- Safety of hardware injections
- Efficiency of vetoing BNS triggers at high SNR
- Comparisons with Data Quality

Motivation

- Investigations of S3 loud inspiral false alarms by Chad Hanna
- Many glitches look to have nearly equal significance in ASI and ASQ in Kleinewelle triggers (generated by Lindy Blackburn of MIT)
- Hardware injections much stronger in ASQ

Parameters

- Tuned by deadtime:
 - ASI Significance Threshold
 - Window size (-3, +8) largely unchanged since
 S3
- Tuned by safety:
 - Ratio of ASQ Significance / ASI Significance

Safety: Inspiral Hardware Injections

– H1-

Safety: Inspiral Hardware Injections

– H2-

-H2-

Safety: Burst Hardware Injections

Safety: Burst Hardware Injections

– H2-

-H2-

Parameters:

- H1
 - ASI Threshold 150
 - ASQ/ASI Ratio 2.5
- L1
 - ASI Threshold 250
 - ASQ/ASI Ratio 2.5
- H2
 - Not used

Efficiency: H1 and L1

– H1-

-L1-

Efficiency: H1 and Data Quality Flags

Efficiency: L1 and Data Quality Flags

Summary

- H1
 - Efficiency above snr of 6.5 = 1.06%
 - Only veto for many BNS clusters with snr ~ 25
 - Deadtime = 0.52%
- L1
 - Efficiency above snr of 6.5 = 5.12%
 - Efficiency above snr of 400 ~ 50% to 70%
 - Deadtime = 2.34%