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LIGO

Outline

e LIGO test mass charging isagrowing concern for LIGO
— Charging mechanism
— Consequences
 Deep UV LED based AC charge management is expected to
be an effective mitigation
— Heritage from GP-B precision flight
— High frequency AC modulation to reduce disturbances

— Out of GW signal band modulation (10 kHz)
— New dimensions of measurements and calibrations

« Stanford ongoing experimental efforts
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LIGO

LIGO Test Mass Charging

e Test mass charging dueto:
— Cosmic ray ionization (Braginsky G020033)
— Pumping system transportation (Rowan CQG 14 1537)
— Dust rubbing transfer (Harry, GO40063)

e Test mass charging conseguences:
— Reduction of suspension Q (Rowan, Harry)

— Non-Gaussian noise due to charge hopping (Weiss)
— Possible noisy forces due to other charged bodies
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bweo | |GO Test Mass Charges Accumulation

Charges can accumulate on LIGO test mass for several months

=) | Charge Control Necessary

Time dependence of electric charge Fragment of record of electric charge
on the test mass on the test mass
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LIGO

Gravity Probe-B

A Stanford-Marshal-L ockheed Satellite Program
A Precision Space FHight Required Charge Management

GP-B selected UV over
cathode discharge

Guide Star
IM Pegasi
(HR 8703)

%

Geodetic Effect
6.6 arcseconds/year
(0.0018 degrees/year)

L1SA selected GP-B
technology as the charge
management baseline
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GP-B Charge Management R& D Heritage at Stanford

il ey

GP-B charge management (Buchman 1993) ' W
— R&D since 1990’s ’
— Non-contact charge transfer by UV light
— Ciritical to GP-B mission success

* |nitial gyro lifting-off

 Continuous charge management during science
measurement

[Buchman 1993] Saps Buchman, Theodore Quinn, G. M. Keiser, and Dale Gill,
“Gravity Probe B Gyroscope charge control using field-emission cathodes,”
J. Vac. Sci. Technol. B 11 (2) 407-411 (1993)
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H89 UV Photon Source Requirements for LIGO
Test Mass Charge Management

* Q~107C/m? commonly cited
» Charging rate Q.~10 'C/day
* N_~10'2 electrons/day
« Photoelectric“Q. E.”: n~10>
e UV photons required: N=10%/
e Pyy=Nhc/AT =89x10"W
e Pyy~1uW (average power over aday)
« Dynamic Range ~ 1000,
Puy ~ 1 mW (Peak power)
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LIGO

UV lHlumination Schemes

e Direct illumination

— UV mercury lampis
routinely used for
attachment removal

— UV LED has sufficient
power for cw direct
Ilumination

— Possibly works

N
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 |llumination on coatings

— Au coating on non-critical
portions of test mass and
suspension structure

— Photoelectric effect on Au
surface has been utilized in
GP-B and ST-7

— Higher throughput in charge
control

pR- I}
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UV LED

TO-39 can packaging

Fiber output with ST connector
Reduced weight

Power saving

Reduced heat generation, easy

thermal management near GRS
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GP-B CMSin Flight
- 2HgLamps
- Waeight: 3.5kg
- Electrical Power 7~12 W

(1 lamp on, 5W for lamp,
5W TEC cooler)
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#89 UV LED Spectrum Measured at Stanford

* Peak wavelength: 257.2 nm, comparable to Hg line 254 nm
e FWHM: 12.5 nm, good photoemission for Au coatings
e Total UV power: 0.144 mW, sufficient for charge management
UV LED with Fiber Output Spectral Distribution
(4-15-2005)
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Hy@o Au Photodiode Photocurrent Response vs.

LSC

Fiber-Tagged UV LED Current
Efficient Photoel ectron Emission Observed

Advantages of direct replacement
of mercury lamp with UV LED:

» Significant power saving

— 1Wfor UV LED CMS
(including al control
electronics)

— 15W for Hglamp CMS
e Significant weight reduction
— 4~5 kg per spacecraft
— 12~15Kkg for launch
o Easy environmental
management:

— Less heat generation near
GRS module

— Much less EMI

Hanford, March 19-23, 2006

Au Photodiode Current with Pre-amplifier (mA)
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(Au phototube UV power calibration ~164\W/mA)
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pjeo UV LED Charge Management
Experimental Setup

UV LED .
N « GP-B heritage
LED Driver .
V4 (ILX 100 series * Au coal ng on
Precision Current Source) proof mass and hOUSi ng
— to simulate LISA GRS
, . b .,\ia-%m Fiber Feed through SC%Il_jES[i)gu;lql generz;{tar tfi'or ° F| ber Connected UV
vacuum:=namoer : drrver modulation .
(HP3250A) LED driven by modulated
Alumina
nags N . current source
nc .
iy | . » Housing electrode
coRirg || SG2: Signal generator mOdUI aII on phase
for electrode bias :
SG2 18 phase-locked to SG1 l OCked to UV mOdU| ation
— (HP32504) « UV light shining on
= \ BNC floating shield Vacuum prOOf Mass and I‘eﬂ eCted
Feed through ectrometer 1
/Coaxial orTriagxiaI Cable ; : OntO hOUSl ng el eCtrOde
: = « Sensitive electrometer to
measure the proof
mass potential
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LIGO

UV LED Charge Management System Has Potentip
Significant Scientific Pay Off

Direct Replacement of
Mercury Lamp with

—Hg Lamp (254nm) — UV LED (257nm) ‘
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LIGO

AC Charge Management
Enabled by Fast Direct Modulation of UV LED

* No need for dedicated DC bias, simplified structure
* Any AC electrical field such as capacitive readout or electrostatic forcing voltages can be used
* UV modulation can be out-of signal band high frequency, minimizing disturbances
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UV modulation is in phase with the UV modulation is in phase with the
positive AC %2 cycle: Photoelectrons negative AC %2 Cycle: Photoelectrons
only produced during positive bias, only produced during negative bias,
and transported to housing electrodes and transported to proof mass
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Positive Charge Transfer

UV LED and bias voltage modulated at 1 kHz

LIGO
May 6, 2005 Positive Charge Transfer Phase Configuration
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UVLED Current (A)
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LIGO

Negative Charge Transfer

UV LED and bias voltage modulated at 1 kHz

May 6, 2005 Negative Charge Transfer Phasing
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LSC

LIGO

UV LED Based AC Charge Management

AC Charge transfer 10KHz UVLED 1.2 mA 50% duty cycle System Capacitance ~170 pF,
5/9/2005
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Resultsfor AC char?e transfer studies using aUV LED with observed power or ~11 mW at a
center wavelength of 257.2 nm. The image on the |eft shows the UV test facility. Thefigure

shows both charging and discharging over a proof masspotential of +/- 20 m\/.
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LIGO

LSC

UV LED vs. Mercury Lamp Based Charge

Management System
Category UV LED CMS Mercury Lamp CMS
Electricd Power Consumption 1W 15W
EMI Minimdl Large dueto RF excitation
Weght 0.3kg 3.5Kkg
Dimenson of the CMS system 10cmx 8cmx 3cm 17cmx 13cmx 17 cm
UV emisson power ~120 uW ~100 uW
UV Power a thefiber tip ~16 uW ~11 W
UV Wavdength, centrd 257 nm 194 nm & 254 nm
UV Wave ength, soread 12.5nim Doppler Broadening
Fast modul ation cagpability Yes—Intendty, pulse No
train frequency and
phase, €c.
Charge management method AC& DC DC only
Charge management frequency Out-of sgna band Insgnd band
Equivdent dynamic range 100,000 100
Charge management resolution high low
Charge management speed high low
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LIGO

UV LED Lifetime Experiment

ILX laser Nitrogen
Driver Chamber
I M odulation
HP Signal
Generator
GPIB
GPIB
Computer Amp = Scope or
Digitizer
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LIGO

UV LED Modulation Direct Readout

Signal from
UV Photodiode

UV LED driver
voltage

Driving signal
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LIGO _ _ LSC
Continued Experiments at Stanford

UV LED lifetime measur ement
- GaN isanintrinsically better radiation-hard material

- Operate UV LED under realistic working conditions for AC charge
management

- Measure the output power level of UV LED over time
- Hirst step of space qualification

* UV Photoelectron energy measur ement
- Measure the kinetic energy of the photoel ectrons
- Deduce work function distribution on the proof mass surface
- Provide surface analysis for contamination patches
- Correlation to surface reflectivity for calibration of optical sensing

« Science outreach students involvement
- Research opportunities provided to local high school students
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