

Broadband Search for Continuous-Wave Gravitation Radiation with LIGO

> Vladimir Dergachev (University of Michigan) LIGO Scientific Collaboration

APS meeting, Dallas April 22-25 2005

DCC: G060180-00-Z

Challenges of search for CW gravitational waves

- Gravitational waves are weak need to average over long time periods
- Several parameters to search for: frequency, sky position, spindown, polarization
- Coherent methods are very sensitive, but result in enormous search space size – broadband, all sky search is impractical for large time base
- PowerFlux place sky-dependent upper limits and detect signals by averaging power. Practical for all-sky broadband searches.

PowerFlux analysis pipeline

PowerFlux results

- PowerFlux produces a 95% CL upper limit for a particular frequency, sky position, spindown and polarization.
- Too much data to store, let alone present the number of sky positions alone is ~10^5 at low frequencies and grows quadratically with frequency
- The upper limit plots show maximum over spindown range, all polarizations and a particular spindowndependent sky area
- We also present a simple formula that approximates background curve within $\pm 50\%$

"S parameter"

Average detector When S is closer to velocity Average detector 0 susceptibility to acceleration stationary artifacts increases Ú. v_{avg} S :=cSpindown Earth Unit sky Frequency (Hz/s) orbit position vector angular velocity

Doppler Skybands

Skyband 0 (good – only exceptionally strong detector artifacts) Skyband 10 (worst – many detector artifacts)

DEC

RA

^{95%} UL

Corresponding skymap of strain limits (Hanford 4km, 149-149.25 Hz, spindown 0)

Corresponding Signal-to-Noise Ratios Background distribution

Detection strength

S4 run summary

- Frequency range: 50-1000 Hz
- Spindown range: 0 through -1e-8 Hz/s
- Background (cyan curve) can be described by the following formula:

$$Strain = 4 \cdot 10^{-26} \cdot f^{0.9} + \frac{3 \cdot 10^{-17}}{f^{3.5}}$$

Here f is frequency in Hz

 Skyband 0 (maximum over which is shown on plots) is defined by

abs(S)>3.08e-9 Hz/s

Livingston 4km upper limits are slightly lower than the summary curve, but not as clean in low frequency range

S4 run results Livingston 4km

Frequency

Hanford 4km upper limits are slightly higher than the summary curve, but much cleaner in low frequency range

S4 run results Hanford 4km

Summary curve deviation

L1 deviation from summary function

Deviation factor

Current S5 sensitivity

Strain Sensitivity for the LIGO Hanford 4km Interferometer

Early S5 Hanford 4km Preliminary Results 40-800 Hz (spindown 0)

log10(Strain)

Early S5 Livingston 4km Preliminary Results 40-700 Hz (spindown 0)

Conclusion

- Low-SNR coincidence algorithm under development
- S5 run is still underway more data is being collected