

Single Stage HAM for Advanced LIGO: Performance Modeling

presented by Brian Lantz for the SEI team, April 14, 2006

Outline

- Picture of the mechanical system (pg. 3)
- Review of requirements (pg. 4)
- Plot Horizontal HAM performance what's important? (pg. 5)
- Ground motion estimates (pg. 6-12)
- Parameters of the mechanical plant (pg. 13-17)
- Blending and control (pg. 18-29)
- Isolation performance of pendulum support point (pg. 30-43)
- Pendulum models and motion of the optic (pg.44-48)

Requirements

G060190 4

HAM performance

G060190 5

Input motion

- Assume the system is supported by an external HEPI system
- Create a simple fit (fat green curve) to various performance data, shown on the next 4 pages. Fits are based on:
 - Measured motion of BSC HEPI
 - Measured motion of HAM HEPI
 - HAM HEPI still needs to incorporate feedback inertial sensors, so current performance above a few Hz is not as good as we expect for Advanced LIGO (or even initial LIGO), this is especially clear in Z.
 - ► HAM HEPI rX and rY are now different, I picked the best one.
 - HAM X is not good at 0.1 Hz, yet the optics table for HAM X is very good. HAM sensors are probably contaminated by tilt. I've picked BSC performance around the microseism, which has better instrumentation.
 - Based on the 90th percentile of motion for 3-10 Hz band horizontal.
 - HAM data and floor data by Shyang Wen, presented at LSC meeting, LIGO-G060125-00-L.

HEPI motion estimate: X&Y

figure adapted from Shyang Wen, HAMI.pdf, SEI log #604

Frequency (Hz)

HEPI motion estimate: Z

figure adapted from S.Wen LIGO-G060125

figure adapted from S.Wen LIGO-G060125

10

HEPI motion estimate: rZ

figure adapted from S.Wen LIGO-G060125

G060190

Percentiles of Motion

When this HAM data was taken, the band limited RMS velocity of the floor was

STATION, DIRECTION	0.1-0.3Hz	0.3-1Hz	1-3Hz	3-10Hz	
CORNER, X	7.81e-007 (75%)	2.59e-007 (70%) 2.06e-007	(80%) 1.21e-007	(90%)
CORNER, Y	7.5e-007	2.22e-007	1.85e-007	(75%) 1.13e-007	
CORNER, Z	4.09e-007 (80%)	1.21e-007 (50%) 3.52e-007	(80%) 5.18e-007	(95%)

data in rms meters/sec, in the band. Percentiles based on LLO data from E. Daw et. al 'Long Term Study of the Environment at LIGO'.

velocities at the 95th percentile for LLO & LHO are: (and the 95% is larger than our data by):

LLO Corner X	1.7 e-6	(*2.2)	6.3e-7 (*2.4)		4.0e-7	(*2.0)		1.6e-7 (*1.3)
LLO Corner Y	1.7 e-6	(*2.3)	6.3e-7 (*2.9)		3.8e-7	(*2.1)		2.0e-7 (*1.8)
LLO Corner Z	0.91e-6	(*2.2)	5.6e-7 (*4.6)	1	7.5e-6	(*2.1)	1	6.1e-7 (*1.2)
				/	1 0 7		/	
LHO Corner X	0.60e-6	(*0.7)	1.3e-/ (*0.5)		1.2e-7	(*0.6)	/	2.1e-/ (*1./)
LHO Corner Y	0.58e-6	(*0.8)	1.2e-7 (*0.5)		1.2e-7	(*0.7)	′	2.3e-7 (*2.1)
LHO Corner Z	0.78e-6	(*1.9)	0.9e-7 (*0.7)		1.0e-7	(*0.3)	┫	4.0e-7 (*0.8)
							/	
rms scaling for Lock acquisition			scaling for 0.6	Hz r	ms	scalin	g f	or performance

data from Shyang Wen, SEI log entry #604

Plant Parameters

- Single stage system.
- Natural frequencies between I and 2 Hz.
- Uses +/- I mm range capacitive displacement sensors and GS-I3 inertial sensors.

Various parameters used in the HAM model

parameters of the 1 stage HAM isolation system

mass of stage (kg, structure) mass from Corwin (for comparison)	1400 1166
trim mass (kg)	100
payload total (kg)	510
payload fixed (kg)	435
payload suspended (kg)	75
total stage 1 fixed mass (kg)	1935
Ixx (kg-m^2) (for 1935 kg)	759
Rad Gyr X (m)	0.627
Iyy (kg-m^2)	797
Rad Gyr Y (m)	
Izz (kg-m^2)	770
Rad Gyr Z (m)	0.631
f0 - X (Hz)	1.22
f0 - Z (Hz)	1.83
f0 -rX (Hz)	1.04
f0 - rZ (Hz)	0.984
horizontal stiffness (N/m)	1.10E+05
vertical stiffness (N/m)	2.54E+05
rX stiffness (N-m/rad)	3.33E+04
rZ stiffness (N-m/rad)	2.93E+04
blade stiffness (N/m)	8.60E+04
blade length (m)	0.474
blade width (m)	0.237
blade thickness (m)	0.0107
tip radius (m)	0.512
effective rod length (m)	0.132
height of cg above LZMP (m)	0.048

(tip radius is the distance from center of table out to the flexures which are located at the tips of the blade springs - important for rotational stiffness)

Stiffness and Compliance DC stiffness is similar to existing HAM platform stiffness defined as F = K*X compliance is X = C*F

Below is the DC compliance matrix for our model, and for the existing HAM stack. for 6 DOF systems, compliance is what we are used to,

ie, push on the system, measure how far it moves.

(vs. put in a 6 DOF offset, and measure the resulting force)

F in N or N-m, X in m or radians

>	> comp = 1e-12	2*(round(1e12	<pre>*inv(-mvReact</pre>	ion)))									
С	omp =							HAM_stack_comp	=				
	9.0528e-06	0	0	7.73e-10	1.4465e-06	0		1.0162e-05	0	0	0	9.9035e-06	0
	0	9.0528e-06	0	-1.4465e-06	7.73e-10	0		0	8.3301e-06	0	-4.2746e-06	0	0
	0	0	3.9346e-06	0	0	-7.71e-10		0	0	3.029e-06	0	0	0
	7.73e-10	-1.4465e-06	0	2.9967e-05	0	0		0	-4.2746e-06	0	1.3134e-05	0	0
	1.4465e-06	7.73e-10	0	0	2.9967e-05	0		9.9035e-06	0	0	0	3.043e-05	0
	0	0	-7.71e-10	0	0	3.4109e-05		0	0	0	0	0	2.0404e-05
>	> 1./diag(com	o)						>> 1./diag(HAM	_stack_comp)				
ans =								ans =					
	1.1046e+05 (C+:ff) f							98406					
1.1046e+05 JUITINESS TOR X, Y, Z, RX, RY, RZ								1.2005e+05					
2.5415e+05								3.3014e+05					
(N/m or N/m or N/m								76138					
33371 (IN/III OF IN-III/Fad)							32862						
	29318		`			/		49010					
	Proposed Single Stage UAM								Turr	ont l		ctac	
	I I OPOSEU SIIIZIE SLAZE I IAIT											SLAL	IX

based on Hytec model

Damped plant - translation

Tech Demo experience Passive Isolation

Blending loops

- Use displacement sensors at low frequency, GS-13 inertial sensors at high frequency.
- Each set of 6 sensors (displacement or inertial) is projected into a "coordinate system" basis (x, y, z, rx, ry, rz).
- center of system is at the center of the lower zero moment plane (not the cg). Choice isn't critical, ETF uses the center of the 3 STS-2 sensors.
- projected sensors are blended, i.e. supersensor X is composed of projected displacement sensor X and projected inertial sensor X.
- X and Y are the same, rX and rY are the same.
- All modeled loops are IIR, not the cool FIR 'Hua style' loops. This makes the modeling easier.
- These loops are good, but not optimal. I don't have a definition of optimal...

More on blending

- X,Y, rX and rY much more aggressive than Z and rZ.
 - to counter tilt (X and Y), and
 - vertical sensor noise generating tilt (rX and rY).
- Notches at 0.67 Hz to minimize rms from first pendulum mode.
- Grey sum line not exactly one because I've cancelled nearby poles and zeros to improve processing time.
- Dashed lines an artifact of model tool, which used to use 3 different sets of sensors for stage 1. Compare just the solid green and blue curves to see performance.
- Isolation from input motion occurs only when inertial sensor (green) dominates the response.

Blending for X & Y

Isolation Loop, x & y

- Isolation factor of 3 at 10 Hz
- Unity gain at 27 Hz
- Like the Tech Demo
- All DOF are about the same.

THURD JUNIOR CHARACTER STATE

Tech Demo experience Active Isolation

Coupling of HEPI motion

Transmission of translational input motion HEPI motion -> table cg motion

Tech Demo experience

Horizontal FIR blending performance X

Pitch Difference

- Tech Demo pitch modes at about 2.2 and 12 Hz
- Single stage HAM pitch mode is about 1 Hz.
 No zero in single stage isolation to bring transmission back up. more than 5 times more pitch isolation.
 (I should do a real calculation)

Blending for rX & rY

Coupling of HEPI motion

Transmission of rotational input motion HEPI motion -> table cg motion

Blending for Z

Blending for rZ

Performance of the system

- System dominated by transmitted HEPI motion. (note: although it is sometimes called 'ground motion' in the legends, it always means HEPI motion)
- I Hz isolation prediction for translation similar to measured performance at the Stanford ETF.
- We demand better rotational performance than seen at Stanford - this improvement is achieved passively (we expect).

Horizontal motion of the suspension point

- horizontal motion of the suspension point is defined as:
 X_table + 0.908 * rY_table + 0.9 * rZ_table.
- (puts cage all the way to one side of optics table)
- The suspension point is 0.828 meters above the table surface, and the table cg is assumed to be 0.08 m below the table surface.
- X and rY are both important.
- Input motion is from HEPI (not the ground)

Transmission of ground to motion at the frame tip, Horz

X, rY, and rZ motion of HEPI

Horizontal Suspension point motion - from HEPI motion

Noise of the sensors

CONTRACTOR CONTRACTOR

Horizontal Suspension point motion from sensor noise

GOGI 90 37 Horiz. Motion at Suspension Point

Vertical Motion of the Suspension point

- Both vertical and pitch contribute to vertical motion of the suspension point.
- We assume Ie-3 mechanical cross coupling from the pendulum.
- For vertical coupling, we assume the suspension point is at x = 0.9 meters to maximize the rY coupling. (For horizontal, it was at x = 0, y = 0.9 m).

HEPI motion estimate for Vertical motion drivers

Coupling of HEPI motion to Vertical Suspension point

Vertical Motion of Suspension point

HAM table Pitch (rY) rms angle of table crosses Ie-8 radians at: 0.24 Hz for pitch (rY), and 0.26 Hz for yaw (rZ)

G060190 42

HAM table Yaw (rZ) rms angle of table crosses Ie-8 radians at: 0.24 Hz for pitch (rY), and 0.26 Hz for yaw (rZ)

Pendulum Isolation, beam direction

Assume a triple pendulum with steel wires, from Norna, April 2006

Test mass motion, beam direction

Pendulum Isolation, angles

Conclusions

- Single stage HAM with these control laws provides good performance starting around 1/2 Hz.
- Most of the performance claims have been demonstrated with the Technology Demonstrator.
- 10 Hz ASD and 0.6 Hz rms meet new requirements.
- Requirements below 0.3 Hz (ASD and rms) need work, but double stage does not help meet those requirements. (try FIR filters, better HEPI tilt control, better tilt sensors)
- Single stage is easier to build, commission, and maintain.
- Seems like a good idea to change the baseline plan.