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Outline of Talk

• Introduction to gravitational waves: sources and 
detection

• LIGO – current status

• Introduction to Advanced LIGO

• Advanced LIGO suspension design

• Conclusion
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What Are Gravitational Waves?

• waves in curvature of space-time 
• a prediction of general relativity
• produced by acceleration of mass 

(c.f. EM waves produced by accelerated 
charge)

• travel at speed of light
BUT

• gravitational interactions are very weak
• no dipole radiation (due to conservation of 

momentum and mass of only one “sign”)
To produce significant flux requires asymmetric accelerations of
large masses, i.e.

Astrophysical Sources
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Gravitational Wave Sources
• Bursts

• catastrophic stellar collapse to form black 
holes or neutron stars

• final inspiral and coalescence of neutron 
star or black hole binary systems – possibly
associated with gamma ray bursts

• Continuous
• pulsars (e.g. Crab)
(sign up for Einstein@home)
• low mass X-ray binaries                          

(e.g. Sco-X1)

• Stochastic Background
• random background “noise” associated with 

cosmological processes, e.g. inflation, 
cosmic strings…..

A New Astronomy

SN1987a
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Simulation of Merging Black Holes

Credit: Henze, NASA

J Baker et al. PRL 96, 111102, 2006
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Gravitational Wave Detection
• Detection of GW - How?

• Measure the time-dependent tidal strain in space produced 
by the waves

• Magnitude of effect?
• consider simplest detector – two free masses a distance L

apart whose separation is monitored

L
• a gravitational wave of amplitude h will produce a strain 

given approximately by

• largest signals (very rare) : h ~ 10-19

• for reasonable event rate : h ~ 10-22 -10-23

h
L
L
≈

Δ

1 period
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Gravitational Wave Detection

• long baseline laser interferometry between freely 
suspended test masses using a Michelson Interferometer

Simplified optical layout
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WORLDWIDE  GW 
INTERFEROMETER NETWORK
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LIGO Observatories

LIGO Hanford Observatory, WA

LIGO Livingston Observatory, LA

LIGO = Laser Interferometer 
Gravitational Wave Observatory
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Evolution of LIGO Sensitivity

NSF review report (Nov 05):

“All three interferometers have 
achieved, and slightly 
surpassed the design 
requirement……”

“… remarkable milestone 
achievement…”

14 papers published from S1 –
S3 presenting upper limits on a 
variety of possible sources                
+                                  
numerous technical papers

Best sensitivity now up to 
14.5 MPc for inspiral range
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LIGO Science 5 (S5) Run and Beyond

• Target: 1 year’s worth of coincidence data at 
design sensitivity

• Started Nov 2005
• LIGO could possibly detect a signal during its 

current observing run. 
• Advanced LIGO is aimed at achieving a 

sensitivity at which at least several signals per 
month (perhaps per week) should be detected. 
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LIGO vs Advanced LIGO

Factor of 10 in 
sensitivity gives 
factor of 1000 in 
volume

slide from B Berger
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Suspension Design for GW Detectors

• long baseline laser interferometry between freely 
suspended test masses
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Suspension Design for GW Detectors continued

• Fundamental requirements
• support the mirrors to 

minimise the effects of
•thermal noise in the 
suspensions
•seismic noise acting at the 
support point

• Technical requirements
• allow a means to damp the 

low frequency suspension 
resonances  (local control)

• allow a means to maintain arm 
lengths as required in the 
interferometer (global control) 
(without adding additional 
noise

Diagram from LIGO web site
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Advanced LIGO Suspensions Team

Wide membership from USA and UK*:
• LIGO LAB: CIT: H. Armandula, M. Barton, D. Coyne, J. Heefner, M. Mageswaran, K. Mailand,    

B Taylor, C. Torrie MIT: P. Fritschel, K. Mason, R. Mittleman,  D Ottaway, L. Ruet, B Shapiro,        
D. Shoemaker   LHO: B. Bland, D. Cook  LLO: J. Romie, O. Spjeld, G.Traylor

• STANFORD UNIVERSITY: N. Robertson (also GEO/Glasgow) - Cognizant Scientist for 
Advanced LIGO suspensions development in USA and UK

• GEO600: GLASGOW: G. Cagnoli, C. Cantley, D. Crooks, A. Cumming, E. Elliffe,  A Grant,          
A. Heptonstall, J. Hough, R. Jones, I. Martin, M. Perreur-Lloyd, M. Plissi, D. Robertson, S. Rowan,   
K. Strain, P. Sneddon, H. Ward, UNIVERSITAT HANNOVER: H. Lueck

• RUTHERFORD APPLETON LABORATORY: J. Greenhalgh, T. Hayler, J O’Dell, I. Wilmut
• THE UNIVERSITY OF BIRMINGHAM: S. Aston, D. Hoyland, C. Speake, A. Vecchio
• STRATHCLYDE UNIVERSITY: N. Lockerbie

*Significant UK involvement :  PPARC awarded  ~$12M grant for development and 
fabrication of the quadruple suspensions for Advanced LIGO



17

Thermal Noise

• Thermally excited vibrations of 
pendulum and violin modes of 
suspensions and of mirror 
substrates + coatings

• To minimise:
• use low loss (high quality factor, 

Q) materials for mirror and 
suspension  – gives low thermal 
noise level off resonance              
-silica is a good choice

•loss angle ~ 2e-7, c.f. steel ~2e-4
•breaking stress can be larger than 
steel

• use thin, long ribbons to reduce 
effect of losses from bending

Monolithic fused silica suspensions have been pioneered in the GEO 600 
detector: makes use of silicate bonding technique developed for Gravity Probe B
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GEO Triple Pendulum Suspension

Silica fibres welded 
to ears

Ears silicate 
bonded to masses
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Development of Suspensions for Advanced LIGO

Above: detail of ear bonded to silica mass and ribbon 
(0.1 mm x 1 mm x 60 cm long) to be welded to ear

Left: lower 3 stages of suspension with fused silica 
ribbons between penultimate mass and mirror (both 
fused silica) 

Below: ear bonded to silica disk for strength tests, and 
interferogram of ears indicating good flatness

Mirror: 40 kg silica mass

ear

ribbon

Diagrams from GEO-Glasgow group
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Seismic Noise

• Seismic noise limits sensitivity at low 
frequency  - “seismic wall”

• Typical seismic noise at “quiet” site at 10 Hz is 
~ few x 10-10 m/ √ Hz

• For Advanced LIGO more than 9 orders of 
magnitude of seismic isolation is required at 
10 Hz – target is 10-19 m/ √ Hz
Solution - use multiple stages of isolation

• Isolation required in vertical direction as well 
as horizontal due to cross-coupling effects

• Ultimately Newtonian noise will limit low 
frequency performance: – LISA (interferometer 
in space) for low frequency detection

Advantage of double
over single pendulum, 
same overall length

Better 
isolation



21

Seismic Isolation - From Initial to Advanced LIGO
active isolation 
platform - under 
development at 
Stanford

hydraulic external 
pre-isolator (HEPI) 
- developed at 
Stanford

quadruple 
pendulum

4 layer passive 
stack

single pendulum

coarse & fine 
actuators

Diagram from Corwin Hardham
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Advanced LIGO Quadruple Pendulum 
Suspension

Four 
stages
Damping 
applied at 
top stage

Schematic Metal prototype under test at Caltech

(Lower support structure removed for clarity) Diagram/picture from Adv. LIGO SUS team

Main chain plus parallel reaction 
chain for control actuation
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Test Mass and Electrostatic Actuator

First article test 
mass: 

34 cm diam x 
20cm thick

Prototype gold-coated 
face-plate  for 
electrostatic actuation
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Suspension Thermal Noise Estimate
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G Cagnoli
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• Suspensions
• Ongoing research and development
• Program of tests on full-scale prototype 

with monolithic final stage
Leading to final design and production

• Advanced LIGO
• Upcoming NSF review for Adv LIGO

(May/June 2006)
• Planned start of funding FY08 (Oct 2007)
• Planned start of installation 2010
• Planned operation from ~2014 

Current Status and Future Prospects
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Conclusion

• Gravitational wave detection is recognised as a key 
research area: exciting times ahead!

Report from Interagency Working 
Group, Feb 2004
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