Experimental Plan for Extraction of Ponderomotive Squeezing

Shihori Sakata, Volker Leonhardt , Kenji Numata, Seiji Kawamura, Shuichi Sato, Atsushi Nishizawa, Akira Furusawa, Mitsuhiro Fukushima and Akio Sugamoto

May 28, 2006 Elba 2006 GWADW – VESF Meeing@lsola d'Elba, Italy

LIGO-G060303-00-Z

Contents

1. Introduction

- » Quantum nondemolition devices
- » Ponderomotive squeezing

2. QND Research

- » Purpose
- » Conceptual design
- » Experimental parameters
- » Noise budget for the experiment
- » Preliminary experimental setup
- 3. Summary & Future Plan

1. Introduction

Advanced detector sensitivity will be limited by quantum noise at almost all frequencies

- » Radiation pressure noise is dominated at lower frequencies
- » Shot noise is dominated at the higher frequencies
 - The point at which shot noise equals radiation pressure noise is called the standard quantum limit (SQL)
- The SQL can be overcome by installing quantum nondemolition (QND) devices in an interferometer
 - » Generation of correlation between shot noise and radiation pressure noise by ponderomotive squeezing
 - Use of homodyne detection which is one of the QND devices

Ponderomotive Squeezing

What is "Ponderomotive Squeezing" ?

- » The vacuum fluctuations are squeezed by back-action because of amplitude for vacuum fluctuations and laser light
 - Correlations between radiation pressure noise in one quadrature and shot noise in the other are generated

2. QND Research

Purpose of our QND research

- 1. Extraction of the ponderomotive squeezing
- 2. Beating the SQL using the ponderomotive squeezing

Conceptual Design

Conceptual design

- » Interferometer configuration
 - Fabry-Perrot Michelson interferometer installing homodyne detection
 - The Fabry-Perot cavities are on resonant condition
- Condition of the extraction of the ponderomotive squeezing as easy as possible
 - Small mirror mass
 - Radiation pressure noise ∝1/m (m: mirror mass)
 - Radiation pressure noise is larger
 - High finesses
 - Radiation pressure noise ∝ F
 (F: finesse)
 - Radiation pressure noise is larger

Shihori Sakata

Experimental Parameters & Noise Budget

Laser power	200 mW
Injected power into	120 mW
the interferometer	
Finesse	7500
Front mirror mass	200 g
End mirror mass	23 mg
Diameter of the end mirror	3 mm
Thickness of the end mirror	1.5 mm
Beam radius on the end mirror	500 μm
Q factor of substrate	10 ⁵
Loss angle of coating	4×10 ⁻⁴
Temperature	300 K
Length of the fiber	1 cm
Thickness of silica fiber	10 μm

Mirror Thermal Noise Calculation I

Mirror Thermal Noise

- » Internal and Coating Brownian Noise
 - The noises are derived from dissipation which homogeneously exist in each material
- » Internal and Coating Thermoelastic Noise
 - The noises are derived from thermoelastic dissipation

Mirror Thermal Noise Calculation

- » Reduction of Brownian Noise as possible as we can
 - Internal Brownian Noise
 - $1/\omega^{1/2}$ (ω : beam radius)
 - Coating Brownian Noise
 - 1/ω (ω: beam radius)
- » Keeping good Aspect Ratio(=Diameter/Thickness), 2/1

Mirror Thermal Noise Calculation II

Calculation parameters

- » Common parameters
 - Beam radius: 500 μm
 - Mirror diameter: 3 mm
 - Mirror thickness: 1.5 mm
 - Temperature: 300 K
- » Parameters about substrate
 - Mirror loss angle : 10⁻⁵
- » Parameters about coating
 - Coating loss angle: 4 × 10⁻⁴
 - Coating material: SiO₂, Ta₂O₅

Suspension/Spring Thermal Noise

Suspension thermal noise of the end mirror

- » Suspension design of the end mirror
 - End mirror: mass 23 mg, diameter: 3 mm, thickness: 1.5 mm
 - Silica fiber: length 1 cm, thickness: $10\mu m$
- » The suspension assumed to be ideal suspension, such as LIGO or TAMA suspension
 - Dilution factor is small, Dilution factor: 0.02
 - Dilution factor: V_{EI} / (V_{GW} + V_{EI})
 - V_{EI}: elastic energy stored in the wire
 - V_{GW}: gravitational potential energy
- » In reality, fiber thickness against the mirror mass is thick
 - The result is probably smaller than realistic suspension thermal noise

Requirement of reduction of other noises

Requirement of reduction of other noises

- » Design sensitivity: 8 × 10⁻¹⁸@1 kHz
 - Main other noises should be reduced below 8×10^{-19}
- » Main other noises
 - − Seismic noise: $10^{-7}/f^2$ [m/rHz] (f \ge 0.1)@NAOJ
 - 10⁻¹³ [m/rHz]@1 kHz
 - Vibration isolation of 10⁻⁶ to 10⁻⁵ should be necessary
 - Laser frequency noise: 3.3 × 10⁻¹⁴/f [m/rHz]
 - Frequency noise: 10⁴/f [Hz/rHz]
 - CMRR: 1/100 should be realized
 - Laser amplitude noise: 1.4 × 10⁻¹⁸ [m/rHz]
 - Intensity noise: 1 × 10⁻⁷ [/rHz]
 - Residual RMS deviation: 1.4 × 10⁻¹¹[m]
 - Intensity noise of a factor of 10 should be stabilized
 - Residual gas
 - 10⁻⁴ Pa

Experimental Setup

Preliminary experimental setup

- » The interferometer is suspended by double pendulum
- » End mirror is suspended by single pendulum
 - Small suspension system is developing
- All of the setup other than laser will be installed in the vacuum chamber

3. Summary & Future Plan

Summary

- » The purpose of the QND research is to extract the ponderomotive squeezing
- » Conceptual design is to use Fabry-Perot Michelson interferometer installing homodyne detection
- » Experimental parameters are almost decided
 - From calculation of the noise budget

Future Plan

- » Suspension thermal noise should be calculated
- » Small suspension system and small mirror will be developed
- » The interferometer will be built

The End