

Diagonalizing sensing matrix of RSE interferometer

Shuichi Sato

TAMA project National Astronomical Observatory of Japan

GWADW-VESF meeting

LIGO-G060306-00-Z

Introduction

- Background
- Overview of RSE interferometer
- Historical review

Signal extraction scheme(1)

- Modulation arrangement
- Signal sensing matrix

Signal extraction scheme(2)

- "Delocation"
- Signal sensing matrix

Summary

Background

- LCGT : (exact) broadband RSE
 - 3km long
 - Underground
 - Cryogenic

No specific R&D for broadband RSE

Goal

Develop length sensing scheme

Points

- (Sufficiently) Diagonal sensing matrix
- Robust sensing scheme
- Scheme less sensitive to various noises
- Easy to acquire lock

RSE interferometer

Additional mirror (SEM) at dark port LCGT: (exact) broadband RSE

Idea of RSE MPO Jun Mizuno Several schemes and experiments (past) MPO Gerhard Heinzel et al. Caltech James Mason et al. Australian National University Daniel Shaddock et al. University of Florida Guido Müller et al. NAOJ (Suspended w/o PRM as a part of full-RSE) Osamu Miyakawa, Kentaro Somiya Several schemes and experiments (on-going) 40m@Caltech : Suspended, detuned (broadband) LIGO 40m team 4m@NAOJ (full-RSE this time!) : Suspended, Broadband Fumiko Kawazoe, Volker Leonhardt et al. Tabletop@ANU : Fixed, detuned David Rabeling et al.

Readout scheme

- RF readout
- DC readout is still under consideration

Modulation scheme

- Double modulation (producing balanced sidebands)
- Double demodulation
- Parallel EOM modulation (to avoid sub-sidebands)

Signal extraction

- Arm control signals from CR x PM
- Signals for central part of RSE from PM x AM

Modulation design (1)

GWADW-VESF meeting

 $I_{sch} = 7.5 \, m$

• $\Omega_{PM} = 10 \text{ MHz}$

• $\Omega_{AM} = 60 \text{ MHz} (2\Omega_{PM} = 20 \text{ MHz}, 4\Omega_{PM} = 40 \text{ MHz} \text{ does not work})$

Isola d'Elba, Italy 2006

Example:

Point 1

Point 2

MI is opaque to AM

• $r_{MIAM} = cos(I_{sch} \Omega_{AM}/c) = 1, I_{sch} \Omega_{AM}/c = \pi/2 + m\pi$

Michelson interferometer (MI) is a kind of "mirror"

• **MI is transparent to PM** • $r_{MIPM} = cos(I_{sch} \Omega_{PM}/c) = 0, I_{sch} \Omega_{PM}/c = 0 + n\pi$

• $r_{MI} = cos(l_{sch} \Omega_m/c)$

• $t_{MI} = i \sin(l_{sch} \Omega_m/c)$

Transparent

Amplitude Modulation

Opaque

Phase Modulation

Modulation design (2)

 $\sim r_{MI}$ t_{MI} are functions of I_{sch} and Ω_{m}

GWADW-VESF meeting

Signal extraction matrix

L-signals

- From CR x PM
- Almost diagonal due to carrier enhancement in arms

I-signals (central part of RSE)

- From PM x AM
- Orthogonal (instead of diagonal)

LCGT base line

Black: Analytic results Red: Numerical simulation using "FINESSE"

	DM	Phase		Degrees of freedom					
Port		RF1	RF2	Lp	Lm	lp	lm	ls	
Bright	CRPM	0	-	1	0	0.0036 <i>0.0026</i>	0	0.0026 <i>0.0013</i>	
Dark	CRPM	90	-	0	1	0	0.001	0	
Bright	AMPM	0	0	0.0017 <i>0.0021</i>	0	1	0 <i>0.0006</i>	0.73 0.51	
Dark	AMPM	90	0	0	0.001 0.00238	0	1	0	
Pickoff	AMPM	0	0	-0.00032 <i>-0.0019</i>	0	-1.3 -1.65	0 <i>-0.0012</i>	1	

Isola d'Elba, Italy 2006

 $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

GWADW-VESF meeting

Almost diagonal!

Perfect separation for lp and ls (in principle)

Some effect on

Signal strength
Off-diagonals

Black: Analytic results Red: Numerical simulation using "FINESSE"

	DM	Phase		Degrees of freedom					
Port		RF1	RF2	Lp	Lm	lp	lm	ls	
Bright	CRPM	-1.3	-	1 0	0	0.00356 <i>-0.0026</i>	0 -0.000062	0.00256 <i>-0.0013</i>	
Dark	CRPM	90	-	0	1 0	0	0.001 <i>0.0013</i>	0	
Bright	AMPM	-1.3	14.4	0.001 <i>-0.0017</i>	0	1 0	0	0	
Dark	AMPM	90	-14.4	0	0.001 <i>-0.0017</i>	0	1 0	0	
Pickoff	AMPM	-1.3	42.4	0.001 0.00088	-0.001 0	0	0	1 0	

GWADW-VESF meeting

Base line signal sensing scheme for LCGT

Simple arrangement of modulations

- PM: inside PRC+SEC
- AM: inside PRC

Delocation enables diagonal signal sensing

Still need to verify

- Lock acquisition
- Noise issue
- Robustness