Suppressing Parametric Instabilities

Li Ju, Slawek Gras, Pablo Barriga, Chonnong Zhao, Jerome Degallaix, David Blair, Yaohui Fan, Zewu Yan University of Western Australia

AIGO

THE UNIVERSITY Western Alistrai

Parametric Instability

Photon-phonon scattering

Instabilities from photon-phonon scattering

- A test mass phonon can be **absorbed** by the photon, increasing the photon energy (damping);
- The photon can **emit** the phonon, decreasing the photon energy (potential acoustic instability).

Instability Condition

Parametric Instability Condition

- Stokes and Anti-Stokes modes usually do not compensation,
- $R \propto Q_{mech}$, Q_{opt}
- $\Delta \omega$ is a function of RoC
- Total parametric gain is the summation over all the unstable modes

Parametric instability is a reality

Low frequency parametric instability observed (f_{mech} <FSR)

- MIT experiment (reported by Tomas Corbitt on Sunday)
- LIGO recent observation of mechanical Q change of 37.8kHz mode (H1 at Hanford, A.C. Melissinos and S. Giampanis, February 27, 2006)

High frequency parametric instability

• Stokes & anti-Stokes are not balanced

Parametric Gain Changes with RoC

Unstable modes

Selected from 1000 acoustic modes. For the test mass with a substrate and coating loss source there are 317 of unstable modes in the range of the RoC 2.039km – 2.086km.

Higher order optical modes contribution

- High order optical mode loss
 - Correct calculation of diffraction loss
 - Can we increase higher order mode loss by nonuniform coating?

Diffraction loss investigation

Figure 1: Comparison of the diffraction losses results for an Advanced LIGO type cavity with test masses of diameter 31.4 cm.

Bablo Barriga with collaboration with LIGO

• Cannot ignore higher order modes contributions

Suggested by Reccardo DeSalvo, analyzed by Pablo Barriga

• Reduce the parametric gain by increasing the higher order mode loss while maintaining the fundamental mode loss <1ppm

Differential Coating

L1=50ppm, L2=25,000ppm, L3=100,000ppm

Differential Coating

L1=50ppm, L2=25,000ppm, L3=100,000ppm

• No significant difference of diffraction loss between the homogeneous and the differential coatings

Ring damper—reducing the mechanical Q

- Introduce local damping (rim of the test masses) far away from the centre of the mirror
 - reduce mechanical mode the mechanical modes Q of the test mass without degrading thermal noise (much)
 - (Reccardo, Gretarsson, UWA)
 - Tests with a rubber o-ring and tape on a test mass at Caltech thermal noise facility

Test mass with ring damper model

Test mass radius r = 0.157m Thickness d = 0.13m

Ring damper position and width vs thermal noise degradation

There exist a strip position where the thermal noise change is minimal

S. Grass, UWA

Elba 2006

Effect of different strip width (fixed Δ **TN**)

Unstable mode (R>1) with different thermal noise degradation (5mm strip width with different material loss angle)

Elba 2006

Parametric gain reduction with ring damper

Conclusion

- Ring damper is an effective method to open up stable operation window, at a price of increased thermal noise
 - How much thermal noise increase is tolerable?
- Other possible solution
 - Active feedback (complicated)
- Gingin high power facility will investigate PI experimentally

Mode

Active feedback to suppress parametric instability

FEM analysis

Substrate: Al₂O₃

- solid95, 21725 elements -assumed isotropy -loss angle $\varphi = 1E-08$ Young modulus E = 400E09Poisson ratio p = 0.23Density $\rho = 3983$ kg/m3

Coating: SiO₂/Ta₂O₅

```
-solid46, 869 elements
-30 layers of SiO2/Ta2O5
-thickness 30(\lambda/4+\lambda/4) = 15\mu m
-assumed loss isotropy \phi_{\parallel} = \phi_{\perp}
-loss frequency dependent (*)
  \phi = 4.0E-05 + f 2.7E-09
  \phi = 4.2E-04 + f 0.4E-09
SiO_2: Young modulus E = 70E09
       Poisson ratio
                         p = 0.17
        Density
                  ρ=2200 kg/m3
Ta_2O_5: Young modulus E = 140E09
        Poisson ratio p = 0.23
                  \rho = 8200 \text{ kg/m3}
        Density
```


FEM model of the test mass

Strip:

-Material properties like for Al₂O₃ (still good approximation) -Various loss angles, various thickness and width for desired thermal noise level

* Harr G M,... et al. 2004 Proceedings of the SPIE 5527 33