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Motivations

* Need for a numerical description of the
WD-WD background as it will be observed
In the LISA data.

— Assess Its magnitude in the various TDI
combinations

— Quantify the effects of the LISA motion around
the Sun.

— Test the effectiveness of various data analysis
techniques for removing it from the LISA data.

D. Hils & P. Bender, R.F. Webbink, Ap. J. 360, 75 (1990)
D. Hils & P. Bender, CQG, 14, 1439 (1997)



Parameters Distribution

Each GW signal depends on 8 parameters:
(M01 0\)1 7\41 B! 1'1 \|j1 (I)()1 D)

e The overall P.D.F can be assumed to have the following
form:

P(Me, @, 4, B, 1, v, ¢, D) = P1(M, @) P(w) P5(1) Py (1, B, D) Ps(¢y)



WD-WD Binaries Distribution

WD-WD binaries
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log Frequency [Hz]

AM Cwvn binaries
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Numerical Simulation

To generate, in the time-domain, 1 year of the X-response to 1
WD-WD signal takes ~ 10 seconds on a 3.2 GHz P4 CPU (an
optimized code can make it in 1 second.)

For 2.6 x 107 sources it would take an unacceptably long time!

We have derived an analytic expression of the infinite Fourier
transform of the signal from a galactic WD-WD binary as seen in
any TDI combination.

Our simulation relies on the convolution of this expression with a
properly selected window function.

We have compared the final time-domain expression of the
response obtained using our Fourier-based analytic formula against
the time-domain computed expression and found perfect
agreement.

Using our algorithm the CPU time/source => ~ 0.1 seconds!

For performing our simulation we relied on the JPL Supercomputer
(3 days of processing!)



Long-Wavelength Expansion

e Since the contribution of the background to the
LISA data is in the low-part of the frequency
band, I.e. Iin the regime where x =2 n f L/c <<1,
we have Taylor-expanded the TDI responses for
each individual signal.

e Care must be taken in selecting the order of the
Taylor expansion in x for any considered TDI
response.

* We have simulated the response of the X-
combination to the WD-WD background.
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Anplitude {relative frequency fluctuations}
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Spectrum of the LISA noise vs. WDWD background noise
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CycloStationarity

e The motion of LISA around the Sun induces a AM-
FM modulation of the received signals.

 |n a statistical sense the WD-WD background
should be regarded as a periodic function of time
with period 1 year.

 Since the autocorrelation will also be a periodic
function of time, the background should no longer
be treated as a stationary random process, but rather
as a Cyclostationary process:

C(t,¥) = Ct+T,t' +T)



CycloStationarity...(cont.)

T=t -t === B(t,1)=0C(tt+7)

> . rt ]_ T . t
B(t,7) = Y B(r)e”"T B.(1) = ?/ﬂ B(t,T)e ™" T dt

r=—00

The Fourier transforms g,(f) of By(7) are the so called “cyclic spectra” of a cyclostationary

process [9]

9:(f) = [ Bu(r)em ™" dr . 3)

B_.(1) = B(7),
9-+(—f) = g:(f) ,

H.L. Hurd, IEEE Trans. Inf. Theory 35, 350, 1989



CycloStationarity...(cont.)

p=net+Xe, —= Go(f) = E(f) +golf) -

This implies that for r > 0 the cyclic spectra of y, coincide

with those of vy, , 1.e. In principle they are not contaminated
by the noise!

In reality, possible non-stationarity of the noise will need to be
accounted for (as always!)



Cyclostationarity and the
WD-WD Inverse Problem

The cyclostationary spectra, g, (f), can be related to
the distribution function of the WD-WD binaries.

IHQUESTIONS!!

How could we solve for the WD-WD population
distribution given these observables?

Is this the “optimal procedure” for solving the WD-
WD background inverse problem?

No matter what the optimal procedure will be, the
astrophysical payoff will be very significant!!
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