

LIGO Core Optics:

a decade of development and experience

W. Kells LIGO Laboratory, Caltech

With acknowledgement of entire LIGO team for its optical development

GWADW 2006

LIGO-G060322-00-Z

June 1, 2006

LIGO "Core" Optics

- 6 (4 test masses; splitter; recycling mirror) large φ optics which form high power cavities.

LIGO

» Low loss, low distortion fused silica

- Designed (epoch '94-97) to achieve science requirements: with 6Watt input
 - » Extensive simulations
 - » Protracted "pathfinder" fabrication test pieces
 - » Transition from 535 to 1064nm
 - Valuable lessons learned from Caltech 40m prototype interferometer

Major early concerns

- Fabrication tolerances: match of optical modes
 - $\approx \Delta$ ROC of mirrors \Rightarrow arm imbalance: excessive "contrast defect" to dark port
 - $\approx \Delta$ reflectivity, loss

LIGO

- » Coating stability and uniformity
- Thermal lensing: effect on recycling cavity "point design"
 - » Long term contamination build up on HR surfaces
 - » Uncertain residual Silica bulk absorption.
- Static charging on suspended dielectric TMs
- Inherent unstable recycling cavity design
 - » Hypersensitivity to polish, coating, homogeneity errors
- Effective loss of long cavities with figure distortions
 - » Essential target of "FFT" studies
 - » Coupled with coating reflectivity tolerance: $r_{ifo} > < 0$ (point design recycling)

Optical Loss Expectations

- Goal: $G_{RC}^{CR} \ge 30$ based on older polish/coating information
- Pathfinder development & fabrication proved much better:
 - » Micro roughness σ_{rms} <0.28 nm \Rightarrow prompt loss ~(4 $\pi \sigma_{rms}/\lambda$)² <10 ppm
 - » Super polished substrate 2 3x lower σ_{rms}

Simulation (FFT) with Fab. Data: Figure= modal distortion Roughness= loss Low absorption= cold "start up" Witness sample reflectivity

Simulated G (at least: CR field not affected by degenerate recycling) far exceeds goals

Consistent with Advanced ligo requirements

LIGO

Scatterometer studies

- Observed interferometer gains lower than Sim. predictions.
 - Consistent with 50-70ppm avg. additional loss per TM.

LIGO

- Consistent with "visibilities" (resonant reflectivity defect) of individual arms
- In situ studies: Some HR surfaces viewable @ 3 angles:
- Scatterometer port 5.5 10-8 Sr Main arm beam H1 ETMy Angular dependence more isotropic, log10(waves(632BA)~2/wavenumber) "point like" than metrology prediction -8 In situ observed scatter ~70 ppm mirr \succ -10FFT map ~same level, character for every TM presentation *k*-1 -12 independent of history/cleaning. roughness n **GWADW 2006**

log10(wavenumbers cm - 1)

In Situ Optics Performance

• G_{RC}^{CR} ~41, which is:

LIGO

- » Consistent with measured arm visibilities
- Consistent with total arm loss dominated by prompt scatter.
- » Scatterometer data extrapolated to absolute loss

	Replaced ITM,			
CAVITY	V	T _{<i>ITM</i>}		Scatter
2k X	.0222	.0277	.0283	
2k Y	.0211	.0272	.0281	7
4k X	.0241	.0279	.0275	7.5
4k Y	.0214	.0263	.028	8.8

 Consistent with lower than anticipated contrast defect (and small FFT dependence on maps)

Homogeneous roughness ?

• Expect isotropic glow from "homogeneous" polish roughness

Find: "point" defect scatter dominates
 Bench scans (1064nm) also show excess

LIGO

Is it just dust ??

Resonant arm, Gaussian illuminated ETM

Analysis of the "Globular Cluster"

• Cleanest point scatter image: 2k ETMy:

» Grab video stills for detailed analysis:

LIGO

- This point defect background~same for all optics.
- Diffuse (micro roughness) background contributes < 1/3 of total scatter.</p>
- Other blemishes don't dominate total (?)
- Puzzle: Why these point defects missed in Lab. QA?

GWADW 2006

8

Coatings sensitive to handling

- For several years Hanford 2k performed poorly
 - » X arm visibility (resonant reflectivity) poor
 - » Ugly recycling cavity "mode" pattern
 - » Excess dark port contrast

LIGO

- » More dramatic: unlocked arm cavity $|r| \neq 1$
- Found: AR coating anomaly

 Hypothesis: extended harsh cleaning of surfaces had etched coating layers.

Lesson: coating sensitivity to thicknes: change (confirmed by model).

LIGO Contamination & thermal lensing

~7 years of installed Core optics

- » No evidence of *accumulating* contamination (scattering or absorbing)
 - Routine full lock only ~5 yrs. High power only 1-2 yrs.
 - Some optics >6 yrs hanging have no evidence of HR absorption >1ppm (design)
 - Net scatter loss seems independent of TM installation epoch (though high !)
- » Residual absorption has been found consistent with materials/Fab. expected.
 - As anticipated by simulations, this level essentially only affects SB fields
 - Bulk silica absorption not controlled sufficiently for "point" thermal design.
 - "TCS" system required for compensating residual variations.
- This typical experience: extrapolates well to Adv. LIGO !
 - » Outstanding discrepancy: installed TM scatter loss far too high
 - Assumed either treatable "dust" issue; or adjustment of coating process
- However also contamination accidents
 - High power operation revealed >10x residual coating absorption
 - Unique to pair of ITMs: no evidence in other Hanford optics. When ??

Contamination in LIGO I TMs

Goal: corroborate in situ performance with bench tests

LIGO

