Noise Hunting at Virgo

Elena Cuoco

EGO

on behalf of the Virgo Collaboration

A special "thank you" to Irene Fiori

One of our main hunters is now busy...

"My contractions are still 6 minutes apart, but my husband's panic attacks are only 2 minutes apart!"

A special "thank you" to Irene Fiori

28-05-06 LUCA 3,4kg!!!

- Our weapons
- Our prey
 - Spectral lines
 - Non stationary noise
 - Broadband noise
 - Transient-like signals
 - Waveform reconstruction

- Coherence

- Coherence
- Multicoherence

- Coherence
- Multicoherence
- Time-frequency map

- Coherence
- Multicoherence
- Time-frequency map
- Non stationary monitor

- Coherence
- Multicoherence
- Time-frequency map
- Non stationary monitor
- Transient signal detection algorithms

- Coherence
- Multicoherence
- Time-frequency map
- Non stationary monitor
- Transient signal detection algorithms
- Adaptive lines identification

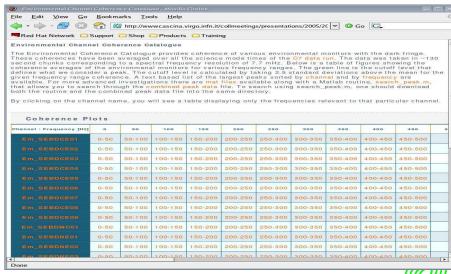
- Coherence
- Multicoherence
- Time-frequency map
- Non stationary monitor
- Transient signal detection algorithms
- Adaptive lines identification
- Wavelet denoising

- Spectral lines
- Non stationary noise
- Broadband noise
- Transient-like signals

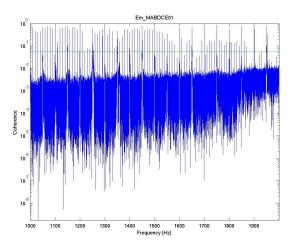
- Spectral lines
- Non stationary noise
- Broadband noise
- Transient-like signals

- Spectral lines
- Non stationary noise
- Broadband noise
- Transient-like signals

- Spectral lines
- Non stationary noise
- Broadband noise
- Transient-like signals

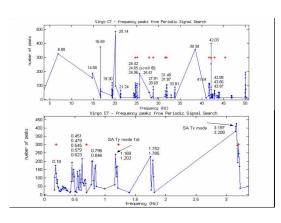

Outline

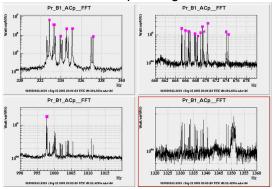
- Our weapons
- Our prey
 - Spectral lines
 - Non stationary noise
 - Broadband noise
 - Transient-like signals
 - Waveform reconstruction


Coherence catalogue

Thanks to N. Christensen

Coherence catalogue





Lines from Pulsar search

1000 highest frequency peaks from 0 to 2000Hz in C7-run data with resolution of 100s

F	Npeak
353	944
103	776
107	669
667.78	625
336.96	577
334.12	570
333.89	566
333.99	563
670.33	561
667.97	561
667.75	558

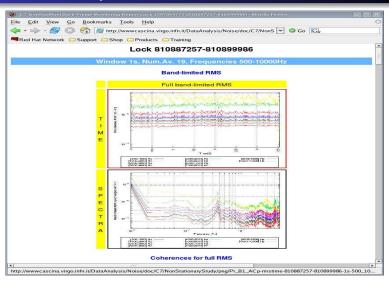
We expected 32 distinct fundamental modes (4 mirrors x 4 wires x 2 modes) . We identified 28 modes!

Outline

- Our weapons
- Our prey
 - Spectral lines
 - Non stationary noise
 - Broadband noise
 - Transient-like signals
 - Waveform reconstruction

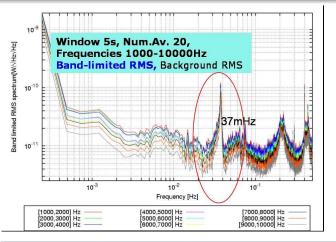
Non stationary monitor

Computed band limited RMS with bands:

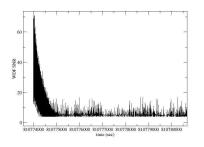

- [0 10] [10 25] [25 60] [60 100] [100 200] [200 500] [500 1000] [1k 5k] [5k 10k] Hz
- [0.1 0.2] [0.2 0.3] [0.3 0.4] [0.4 0.5] [0.5 0.6] [0.6 0.7] [0.7 0.8] [0.9 1] kHz
- [1 2] [2 3] [3 4] [4 5] [5 6] [6 7] [7 8] [8 9] [9 10] kHz

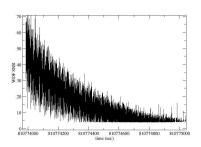
Spectral analysis good between 1 mHz and 500 mHz

G. Vajente


Non stationary monitor

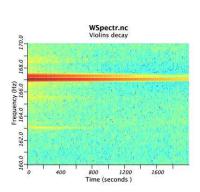
Non stationary monitor


NB


LF angular noise couples to narrow and intense lines in Dark Fringe increasing significantly noise level nearby

Post lock ringdown

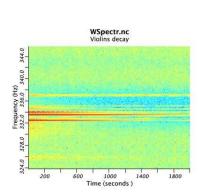
Just after the lock of the ITF, a noiser period is present



Using whitening and adaptive lines identification method, we identified the main excited resoncances...

Excited resonances identification

@167Hz



Excited resonances identification

@333Hz

Outline

- Our weapons
- Our prey
 - Spectral lines
 - Non stationary noise
 - Broadband noise
 - Transient-like signals
 - Waveform reconstruction

Multicoherence and noise removal

s is our signal n_i a set of auxiliary noise signals τ_i set of coefficients for the linear trasformation

$$s'(\omega) = s(\omega) - \sum \tau_i(\omega) n_i(\omega)$$

$$C(\omega) = \begin{cases} ss & sn_1 & sn_2 & sn_3 \\ sn_1 & n_1n_1 & n_1n_2 & n_1n_3 \\ sn_2 & n_2n_1 & n_2n_2 & n_2n_3 \\ sn_3 & n_3n_1 & n_3n_2 & n_3n_3 \end{cases}$$

$$<$$
 a $(\omega)b^*(\omega')>=2\pi\delta(\omega{-}\omega') extsf{C}_{ab}(\omega)$

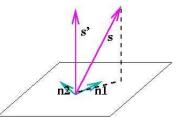
$$min_{ au_i}C_{s's'}(\omega)$$

G. Cella, Off-Line Subtraction of Seismic Newtonian Noise, QC173.6 .R44 2000 B. Allen et al., qr-qc/9909083

Multicoherence and noise removal

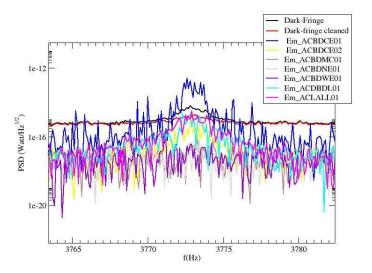
s is our signal n_i a set of auxiliary noise signals τ_i set of coefficients for the

linear trasformation

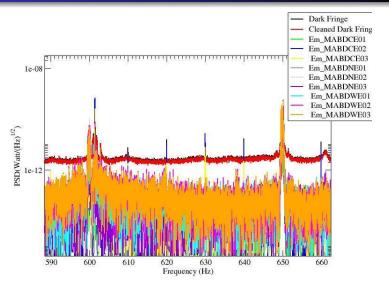

$$s'(\omega) = s(\omega) - \sum \tau_i(\omega) n_i(\omega)$$

$$C(\omega) = \begin{array}{ccccc} & S & O & O & O \\ & O & n_1 n_1 & n_1 n_2 & n_1 n_3 \\ & O & n_2 n_1 & n_2 n_2 & n_2 n_3 \\ & O & n_3 n_1 & n_3 n_2 & n_3 n_3 \end{array}$$

$$<$$
 $a(\omega)b^*(\omega')>=2\pi\delta(\omega-\omega')C_{ab}(\omega)$


$$min_{ au_i}C_{s's'}(\omega)$$

G. Cella, Off-Line Subtraction of Seismic Newtonian Noise, QC173.6 . R44 2000 B. Allen et al., gr-qc/9909083


Example: acoustic noise removal

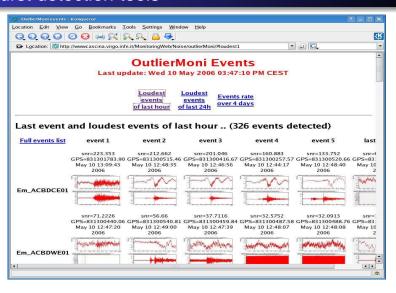
Example II: lines @10Hz

Outline

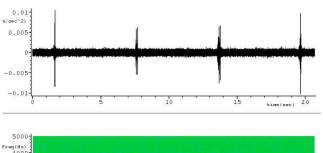
- Our weapons
- Our prey
 - Spectral lines
 - Non stationary noise
 - Broadband noise
 - Transient-like signals
 - Waveform reconstruction

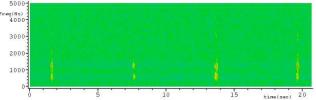
Burst detection tools

Transient detection algorithms

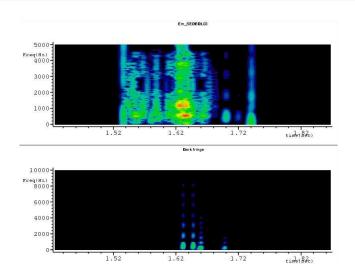

- Mean Filter
- Wavelet detection filter
- Power Filter
- OutlierMoni
- Peak correlator

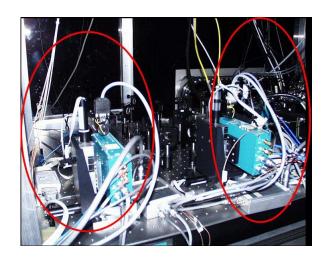
Coincidences among auxiliary channels and DF to build vetoes procedure!


Burst detection tools

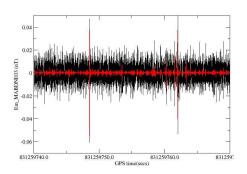


Example I:Detection bench accelerometer




Example I:Detection bench accelerometer

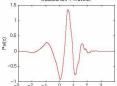
Example I:Detection bench accelerometer



Example II: lightening

Whitened signal in a magnetometer

Outline


- Our weapons
- Our prey
 - Spectral lines
 - Non stationary noise
 - Broadband noise
 - Transient-like signals
 - Waveform reconstruction

$$Wf(a,b) = \langle f, \psi_{a,b} \rangle = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{b}} \psi^*(\frac{t-a}{b}) dt \qquad (1)$$

where the base is a zero average function, centered around zero and with a finite energy. The entire base is obtained by translations and dilations of the base atom:

$$\psi_{ab}(t) = \frac{1}{\sqrt{b}}\psi(\frac{t-a}{b}) (2)$$

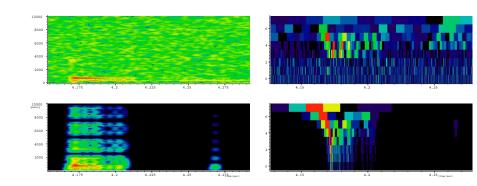
The discrete wavelet transform (DWT) is an implementation of the wavelet transform using a discrete set of the wavelet scales and translations.

The Donoho-Johnston thresholding

To select the highest coefficients, we have to compare each coefficient with e threshold.

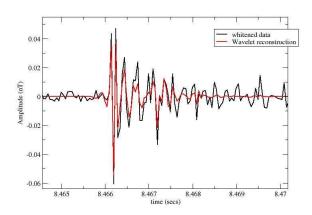
We used the universal Donoho and Johnstone method for the threshold

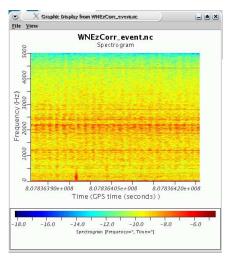
$$t = \sqrt{2 \log N} \hat{\sigma} \tag{3}$$

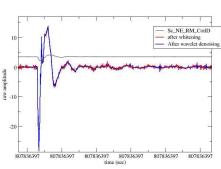

where N is the number of data points and $\hat{\sigma}$ is an estimate of the noise level variance.

We used as estimate for the $\hat{\sigma}$ the one obtained using the AR parametric fit to the data.

We can also choose to use and adaptive estimation for the $\hat{\sigma}$.


An example on a transient real signal (dark fringe channel)


Example I: lightening waveform



Example II: glitch on coil

Summary

- A full monitoring system for noise identification and noise removal has been set-up
- As soon as Virgo will reach the design sensitivity, the dark fringe will show up new noise sources
- Data conditioning tools must be ready for GW signal detection

