

The Virgo noise budget

Rusi Casty Forthe Vigocole Instan

GWADW 2006, Isola d'Elba

LIGO-G060340-00-Z

1

Summary

> Introduction : the sensitivity curves of Virgo Commissioning

- > Analysis of the technical noises :
 - Length control noise
 - Angular control noise
 - Mirror actuator noise
 - Oscillator phase noise
 - Laser frequency noise
- ➤ Noise budget of the C7 run (September 2005)
- ➤ Conclusion

The sensitivity curves of Virgo Commissioning

TreahteVignonialsenäiviy:

⇒Tetnizhrieshzetobeithtlidinaetrobeauel

The recycled interferometer : locking scheme

Noise budget of the C5 run (december 2004)

How these noises have been identified ?

Which technical upgrades between C5 and C7 runs ?

Beam Splitter longitudinal control noise

Nieanlysisi3stps:

Beam Splitter longitudinal control noise

Reduction of the Beam Splitter control noise : from C5 to C6

Reduction of the Beam Splitter control noise : from C6 to C7

<u>Technical upgrades</u> : → Substraction of the Beam Splitter control noise by sending appropriate corrections to the end arm mirrors (=A**thatchipe**)

Reduction of the Beam Splitter control noise : from C6 to C7

<u>Technical upgrades</u> : \rightarrow Substraction of the Beam Splitter control noise by sending appropriate corrections to the end arm mirrors (=Aflatchipe)

Angular control noise

From C5 to C7 : reduction of Beam Splitter angular control noise

During C7 : sensitivity limited by Input Mirrors (NI, WI) angular control noise

<u>April-May 2006</u> : A vertical miscentering of about 1 cm has been corrected

 \Rightarrow sensitivity improvements are expected

Mirror actuator noise

Reduction of the actuator noise : from C6 to C7

Serial resistor increased from 250 Ω to 6 k Ω (arm mirrors)

 \Rightarrow Actuator noise reduced by a factor 23

<u>Problem</u> : the maximum strength applied to the mirror has to be reduced (because of the DAC saturation voltage)

 \Rightarrow Hierarchical control is needed (see G. Losurdo's talk)

Reduction of the actuator noise : towards the design

Next upgrades:

- Fine tuning of the DAC electronics
- Implementation of an analog "deemphasis" filter

Noise at high frequency during the C5 run

@ high frequency : Noise higher than electronic noise and shot noise by a factor 20

 \Rightarrow C5 sensitivity limited by oscillator phase noise

Oscillator phase noise

Reduction of the oscillator phase noise

Laser frequency noise

• Propagation of frequency noise compatible with a CMRF (arm asymmetry) of about 10^{-3}

 \Rightarrow Reduction of the CMRF by improving the arm symmetry

• Main origin suspected : shot noise in the **B5_ACp** signal

 \Rightarrow Reduction of the shot noise by increasing the power of the incoming beam

Noise budget of the C7 run (Sep 2005)

Conclusion

- The sensitivity of the C7 run is well understood
- The main sources of noise are :
 - Control noises (above all angular) @ low frequency
 - Environmental noise (sometimes correlated with diffused light)
 - Shot noise @ high frequency
- How the sensitivity will be improved ?
 - Centering of the beam with respect to the mirrors (started)
 - Implementation of the full automatic alignment system (started)
 - Fine tuning of the alpha technique (*planned*)
 - Reduction of actuator noise (started)
 - Isolation of the optical benches (planned)
 - Power increased x 10 (already performed)

Specifications for generator phase noise

