

Converter Design Update

Advanced LIGO CDS Meeting, Aug 1, 2006 Daniel Sigg, Paul Schwinberg, Josh Myers

G060375-00-D

Features of Present System

- Collocation of analog and digital
- Poor noise performance
- Inadequate throughput
- Limited timing support
- Convoluted data paths
- □ High costs

Requirements

□ Timing

- Absolute timing precision relative to UTC: 1µs
- Guaranteed (no counting of cycles forever)
- Latency between converter and processor: < 5µs</p>
- Noise
 - Converter range: ±10V SE or ±20V DE
 - Converter noise: 100–300nV/√Hz (SE, best effort)
 - > No electrical connection between converters and processors (fiber)

Others

- No restriction on converter location
- Detection of transmission errors
- Support for diagnostics

Advanced LIGO

Analog Front-End

Advanced LIGO

Digital Front-End

Plans

Finish evaluation of converter test board

- Use new Audio Precision analyzer (maybe add AES/EBU interface)
- ➢ Wrap up in Fall 2006
- □ Get an FPGA test board with gigabit fiber interfaces
 - Uplink development till end of 2006
- Develop a 1U ADC and/or DAC chassis
 - > ~8 channels per chassis with timing and uplink
 - Prototype developed by mid next year
- Integrated chassis/crate
 - Requires location plan
- □ Fast Servo Loops?
- □ Slow Controls?

Advanced LIGO

Other Documents

- □ T050042: Proposal for a new Converter Design
- □ T050060: Implementing an IIR Filter in Hardware
- D060118: Converter Test Board
- T060082: Converter Backplane
- □ Wiki: UplinkDesign: Gigabit Ethernet Uplink Ideas
- Rachel Reddick's SURF report (soon)