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Agenda

• Optimized coatings
– Background
– Genetically-optimized coatings
– Stacked-doublet design
– Results

• Analytic structure of “hyperboloidal” beams
– Background: From nearly-flat (FM) and nearly-concentric

mesa (CM) beams to Bondarescu-Thorne (BT) 
hyperboloidal beams

– Rapidly-converging Gauss-Laguerre (GL) expansion
– Some results: Beam shapes and mirror corrections
– Generalized duality relations (lowest-order mode)

• Complex-order Fourier transform
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Fundamental IFO noises
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Suspension thermal noise

Substrate thermal noise
Coating thermal noise - structural damping losses

Substrate thermoelastic noise
Coating thermoelastic noise

Thermorefractive noise

see., e.g., Shanti Rao’s thesis (Caltech, 2003) for a nice review
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Photon-driven (photoelastic) noise - Laser-driven therm. fluct.

- Refractive index fluctuations

Thermal noise budget
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Suspension thermal noise

Substrate thermal noise
Coating thermal noise - structural damping losses

Substrate thermoelastic noise
Coating thermoelastic noise

Thermorefractive noise

see., e.g., Shanti Rao’s thesis (Caltech, 2003) for a nice review
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Photon-driven (photoelastic) noise - Laser-driven therm. fluct.

- Refractive index fluctuations

will be dominant 
for Silica substrates

will be dominant 
for Sapphire substrates

Thermal noise budget
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Alternating  high/low - index layers grown on top of substrate 
First/last layer: high-index
Further (λ/2) low-index protective layer on top (“cap”)

…
cap

SiO2 substrate

Current design: Quarter wavelength layers (QWL)
High-index (red): Ta2O5
Low-index (blue): SiO2

Coating geometry (as of today)
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Position noise PSD
Poisson ratio of substrate

Beam half-width

Young modulus of substrate

Boltzmann constant

Absolute temperature

2

3/ 2

2 (1 )( ) B
x eff

k TS f
f wY

σ φ
π

−
=

Effective  loss - angle  of   mirror
(complicated  function  of  layers’
thicknesses, loss-angles, Young
moduli & Poisson coeffs.)

Coating thermal noise PSD
[G. Harry, LIGO-T040029-00-R, 2004]
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Position noise PSD
Poisson ratio of substrate

Beam half-width

Young modulus of substrate

Boltzmann constant

Absolute temperature

2

3/ 2

2 (1 )( ) B
x eff

k TS f
f wY

σ φ
π

−
=

Effective  loss - angle  of   mirror
(complicated  function  of  layers’
thicknesses, loss-angles, Young
moduli & Poisson coeffs.)

Increase spotsize
(mesa beams)

Reduce coating loss-angle
(materials & geometry)

Reducing coating thermal noise
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Poisson ratios 
Young moduli (substrate, coating - , coating - )
Loss  angles

=
=
=

||, ,σ σ σ⊥

||, ,Y Y Y⊥

||, ,φ φ φ⊥

⊥ ||

coat 1 2d d d= +

1 2,d d = high/low index layer thickness

Coating loss-angle
[G. Harry, LIGO-T040029-00-R, 2004]
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defines implicitly ||σ

Basic ingredients: 1,2 1,2 1,2 1,2, , ,Y dφ σ

Coating loss-angle (cont’d)
[G. Harry, LIGO-T040029-00-R, 2004]
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defines implicitly ||σ

Basic ingredients: 1,2 1,2 1,2 1,2, , ,Y dφ σ

“Better” materials
(lower losses)

“Better” geometry
( ? )

Reducing coating thermal noise (cont’d)
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• Select among alternative low/high index mates for best
tradeoff in terms of dielectric contrast, acoustic losses,
optical absorption. Votes for tantala/silica. Niobia/silica, 
tantala/alumina, alumina/silica also tested

• Ongoing research at LMA (and Glasgow) on Ti-doped
tantala.  Reduced  acoustic losses observed; Young’s
modulus  and  optical  absorption  almost unchanged.
Mechanism yet unclear

• Alternative materials/dopants (e.g., silica-doped titania,
rare-earth dopants, etc.)  ?

“Better” materials
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• Current coating design: Stacked doublets of quarter-
wavelength (QWL) SiO2 - Ta2O5 layers

• Yields largest reflectivity among all stacked-doublet
designs for any fixed no. of layers (or equivalently,
smallest no. of layers at any fixed reflectivity)

• Does not yield the mimimum noise for a prescribed
reflectivity, hence not optimal

“Better” geometry?
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Stacked non-QWL doublets
Truncated-periodic

General (non-periodic) Explored via Genetic optimization

Most obvious generalization of 
stacked  QWL  doublets; also
suggested by GA optimization

Highest design flexibility; no
a-priori assumption on structure

Regular-non periodic  Fractal & substitutional
“perfect” (polarization/incidence
angle insensitive) dielectric mirrors…

“Better” geometries: Possible directions
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-structural-related constraints
-multiple-wavelength operation
-several (> 2) materials, etc.…

Available options include:

• Key Features

Multiple, heterogeneous 
mixed continuous/discrete constraints
Multi-objective and/or best tradeoff
optimization
Robust. Slow.

Educated ignorance attitude (almost no a-priori assumption on structure 
of sought solution - will shed light on it !);

Effective &  well established (e.g. microwave antenna and filter design)…

Non-periodic coatings: Genetic optimization 
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CrossoverCrossover
++

MutationMutation

s

-Problem unknowns: genes
-Point in search space: chromosome
-Set of points in search space:  population
-Evolve random initial population
according to evolutionary schedule

Genetic optimization in a nutshell
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GA-engineered prototype
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4582.467033.015839.41Ltot nm

2747.355217.43479.98L(SiO2)   nm

1835.111815.612359.43L(Ta2O5) nm

235.4614.9116.201-|G|2      ppm

284436N (cap included)

QWL-2GeneticQWL-1

GA-engineered vs. nearest-neighbor QWL
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2 – dielectric  media based
GA-engineered coatings  for 
minimum noise at prescribed 
show trend toward non-QWL
stacked-doublet configurations,
except for the terminal layers

Suggests the following practical design criterion:
a) Design minimum noise configuration
b) Tweak terminal layer thicknesses, e.g., using GA

Lessons learned from genetic optimization
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Single doublet  noise contour plots vs.   zH= nTa2O5 ∆Ta2O5/λ0 and  zL= nSiO2 ∆SiO2/ λ0.
Left panel: exact. Region of interest highlighted.
Right panel: first-order truncated  Taylor-McLaurin expansion with initial point 
zH = 1/8,  zL = 3/8  (white-cross marker).
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Single  doublet  noise.  Percent  relative error  between  exact and first-order 
truncated Taylor (linearized)  expansion  w.  initial  point  zH=1/8, zL = 3/8
as a  function of  zL in  the  range 0 < zL < 1/4, zH = 1/2 - zL
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Nd stacked-doublets: Reflectivity & noise
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zH

zL

Minimizing stacked doublet noise 
for prescribed reflectivity
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Assign number Nd of doublets;
Compute                  ; 

For                                 ,
identify point              on                     contour
such that                                           is a minimum;

construct curve through                            points.
Loop.

( )QWL dNτ
*( )QWL d maxNτ τ τ≤ ≤

* *( , )L Hz z *( , , )L H dz z Nτ τ=
* * *( , , )L H dPSD z z N PSD=

* * ** [, , ]( ) L HzSD zP τ

Constructing stacked-doublet minimum-noise 
vs. reflectivity tradeoff curves
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Any point on any curve
corresponds to some
(zL,zH) value. 

Noise

# d
ou

ble
ts

γ=10

2

.constτ =

Constructing stacked-doublet minimum-noise 
vs. reflectivity tradeoff curves (cont’d)
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Reflectivity contour lines very thin: negligible difference

zL zL

zHzH zH+ zL = 1/2

Minimum-noise solution: Exact vs. approximate

(~10% uncertainties in material parameters may blur the differences)
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Prescribe transmissivity : 

Find  smallest Nd :  
Do Nd = Nd +1,

find  (zL,zH) :
zL+zH =1/2 ( ∼ minimum noise)

while 

*( , , )L H dz z Nτ τ=

*( )QWL d PNτ τ τ= ≤

2
1P pτ = − Γ

( , , ) ( , , 1)L H d L H dPSD z z N PSD z z N≤ −

Minimum-noise stacked-doublet design
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Minimum-noise stacked-doublet design (cont’d)
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z1

zN

1-|Γ|2

reflectivity + 10%, noise almost unchanged 
(zL(1st) = 0.0943, zH(last) =0.437, in units of local wavelength )
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Optical absorption
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Transmissivity [ppm]distribution over 
104 realizations featuring random uni-
form layer thickness thickness errors 
within ±1nm .

Frequency response (plain &
end-tweaked almost the same)

Frequency response and robustness
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• Optimum thicknesses and achievable noise reduction 
critically dependent on coating loss – angles

• Genetic optimization may handle more general (multi-ob-
jective, multi-dielectric) problems/configurations

• Stacked-doublet coatings with tweaked end-layer thick-
nesses are the optimal design for 2-dielectric mirrors;
25% event rate boost obtained for  γ ≈ 10

Conclusions (partial)
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Several techniques:
Indirect [loss-angles from mechanical ringdown]

thin/thick membranes (Glasgow, MIT)
clamped cantilever (LMA)

Sources of uncertainty:

Direct [coating loss angle from noise PSD]
-thermal noise interferometers (Caltech, Tokyo)

Several geometries

,Yσ same for coating and bulk
could be retrieved from redundant
measurement but ill-conditioning
ratio between energies stored in
substrate/coating from FEM analysis;
analytic result for cantilever geometry

Coating loss-angle measurements
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new Y; better FEM code

Indirect coating loss-angle measurement
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Measurement related – Poisson-law distributed ? 
(measurement  process can only spoil quality factors) 

Use minimum loss-angles for synthesis ?

Process  (technology)  related – Gaussian distributed ?
Use average loss-angles for synthesis ?

Least-favorable-case synthesis?  Pays little…

Few measurements available - Hard to distinguish the two

Loss-angle confidence interval
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• Optimum thicknesses and achievable noise reduction 
critically dependent on coating loss - angles

• More direct/indirect accurate & reliable measurements of 
coating  loss - angles  needed; work is in progress (LMA,
Glasgow, Urbino, TNI)

• Genetic optimization may handle more general (multi-ob-
jective, multi-dielectric) problems/configurations

• Stacked-doublet coatings with tweaked end-layer thick-
nesses are the optimal design for 2-dielectric mirrors;
25% event rate boost obtained for  γ ≈ 10

Conclusions
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For more details …
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Agenda

• Optimized coatings
– Background
– Genetically-optimized coatings
– Stacked-doublet design
– Results

• Analytic structure of “hyperboloidal” beams
– Background: From nearly-flat (FM) and nearly-concentric

mesa (CM) beams to Bondarescu-Thorne (BT) 
hyperboloidal beams

– Rapidly-converging Gauss-Laguerre (GL) expansion
– Some results: Beam shapes and mirror corrections
– Generalized duality relations (lowest-order mode)

• Complex-order Fourier transform
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Mesa beams

• Use of flat-top (“mesa”) beams suggested for mitigating 
thermal noise effects in Adv-LIGO [D’Ambrosio et al., LIGO-
G000223-00-D]

– Better averaging of thermally-induced mirror surface 
fluctuations

Gaussian Beam
Mesa Beam

mirror
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Mesa beams (cont’d)
• Nearly-flat mesa (FM) beams

– Synthesized via coherent superposition of minimum-
spreading Gaussian beams (GB) with parallel optical axes

– Supported by nearly-flat mirrors with “Mexican-hat” profile

GB

Mesa beam spherical

Mexican hat

2

2
0

0

(1 )
22( )

r r i
w

mesa r R
u r d r e

′− −
−

′≤
′∝ ∫
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Mesa beams (cont’d)

GB TN 

Mesa beam 
TN

Sensitivity Gain:
x 1.7 (f=100 Hz)

[M.G. Tarallo, LIGO G060305-00-Z, 2006 ]
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Mesa beams (cont’d) 

• Concerns about tilt-instability [Savov & Vyatchanin, gr-
qc/0409084]

• Nearly-concentric mesa (CM) beams
– Same intensity distribution at the mirror
– Much weaker tilt-instability [Savov & Vyatchanin, gr-

qc/0409084]

• FM and CM configurations connected by duality relations
– One-to-one mapping between eigenstates [Agresti et al., 

gr-qc/0511062]

• Questions about optimal beam-shaping
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FM/CM vs. BT hyperboloidal beams
• More general (“hyperboloidal”) beams [Bondarescu & 

Thorne, gr-qc/0409083] may be of interest

• FM beams
– Optical axes are the generators of a cylinder

• CM beams
– Optical axes are the generators of a cone

• BT hyperboloidal beams
– Optical axes are the generators of a hyperboloid
– Parameterized via “twist angle”
– Contain FM (α= 0) and CM (α=π) as special cases

0 α π≤ ≤
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L

0r r

waist plane

nearly-spheroidal mirrors

( ) ( )z S r h rα α= −

z0

BT hyperboloidal beams

• Supported by nearly-spheroidal mirrors

• Field distribution on fiducial spheroid [Bondarescu & Thorne, 
gr-qc/0409083]

– θ0-integral generally needs to be computed numerically
– Closed-form (Gaussian) solution for α=π/2

( ) ( ) ( )0
2 2

2 0 0 00
0 0 0 02 20 0

0 0

2 cos
, exp sin sin 1 cos

2
R r r rrrrU r S dr d r i i

w w
π

α α

θ
θ θ α α

⎡ ⎤+ −
⎢ ⎥= Λ − −
⎢ ⎥⎣ ⎦

∫ ∫

• Fiducial spheroid:

• Waist-plane aperture radius:

• GB spot size:                   (minimum spreading)

( ) ( )2 2sin 2
2

rLS r
Lα

α
≈ −

0R

0
0

Lw
k

=
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BT hyperboloidal beams (cont’d)
• Mirror profile correction

• Symmetry/duality relations
– Field distribution

– Mirror profile correction

( ) ( ) ( )
0

arg , arg 0,U r S U S
h r

k
α α α α

α

−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=( )arg , constantU r S hα α α− =⎡ ⎤⎣ ⎦

*

*, U UU U π α α
α α

−
− = =

Λ Λ

( ) ( )h r h rπ α α− = −
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GL expansions

• FM and CM beams
– Field distributions at the waist plane related via Fourier 

transform (FT)
– Coincide with “flattened” beams in [Sheppard & Saghafi, 

Opt. Comm. 132, 144, 1996]
• Gauss-Laguerre (GL) expansions available

• FT ⇒

( ) ( )
2

22 exp
2m mLξψ ξ ξ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
GL (orthonormal) basis functions

( ) ( ) ( )0 1 m
m mA A π= −

( ) ( ) ( ) ( )0
0

0 00 0

2 2,0 , ,0m m m m
m m

r rU r A U r A
w w

π
π ψ ψ

∞ ∞

= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑
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GL expansions (cont’d)
• Expansion coefficients [Sheppard & Saghafi, Opt. Comm.

132, 144, 1996]

0 10 20 30 40 50 60 70 80
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(π

)
m

 

 

m
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0.5w
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=

0
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0.25w
R

=

0

0

0.1w
R

= • Easily computable

• Abrupt fall-off for  

P: incomplete Gamma function( )
2 2
0 0

2 2
0 0

2 1,
2m

w RA P m
R w

π ⎛ ⎞
= +⎜ ⎟

⎝ ⎠

2
0

2
02

Rm
w

≥

Rapid convergence
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GL expansions (cont’d)

• Extension to generic BT hyperboloidal beams [Galdi et 
al., Phys. Rev. D 73, 127101, 2006]

• Allows field computation at any point in space
– Use standard GL (paraxial) propagators
– Field distribution on the fiducial spheroids

• Symmetry/duality relations verified

( ) ( ) ( )
2

0
0 0

cos, exp
2

m
m m

m

r rU r S ik i A
L w

α
α α

α ψ
∞

=

⎛ ⎞⎛ ⎞
= Ω − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

( ) ( ) ( ) ( ) ( )

0 0

2,0 , cos m
m m m m

m

rU r A A A
w

α α π
α ψ α

∞

=

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
∑
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Results: Beam shapes
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Results: Mirror corrections

• Same parameters

• For 

• Typical errors: ~0.1nm
– Well within fabrication 

tolerances
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Generalized duality relations
• Two arbitrary (α1,α2)-indexed BT hyperboloidal beams 

related by: 

( )
( )

( )0

2 2

2

1

cos,0 ,0 ,
cos

wHU r U r
σ

α α
ασ
α

←⎯⎯→ = −

( ) ( ) ( ) ( ) ( )

( )( )
( )

0

0
0 0 0 02 20

0 0

2 2
0

2
0

44
1 1

1
                                          exp , 1

1

w
rrH F r r dr F r J

w w

r r
w

σ σ
σ σ

σ
σ

σ

∞ ⎡ ⎤
≡⎡ ⎤ ⎢ ⎥⎣ ⎦ + +⎣ ⎦

⎡ ⎤+ −
⎢ ⎥× − ≥ −

+⎢ ⎥⎣ ⎦

∫

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0 0 0 0

1 1 , 1w w w w wH F r H H F r H H F rσ σ σ σ− −≡ = < −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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( )Im γ( )Re γ

2α
0 0 π

2α

1α

1=

1=0=
0<

0<

0>0>

0= 0= 0=

π

2
π

π2π 2π

Generalized duality relations

• Fractional FT operators of complex order

• Generalizes (for lowest-order mode) the FM-CM duality 
relations in [Agresti et al., gr-qc/0511062]
– Numerically checked to work for lowest-order radial 

modes, at any azimuthal order

2

1

cos1 log
cos

i αγ
π α

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

1 2 0α α γ= ⇒ =

1 2 1α π α γ= − ⇒ =

(identity operator)
(standard FT)

Special cases
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Conclusions and perspectives

• Summary
– Focus on the analytic structure of a class of hyperboloidal

beams of interest for future GW interferometers
– Rapidly-converging, physically-insightful GL expansions

for generic BT hyperboloidal beams
• Field computation at any point in space
• Validation/calibration against reference solution

– Generalized duality relations
• Complex-order FT

• Current/future research
– Thorough parametric analysis

• Implications for Adv-LIGO
• Beam-shape optimization

– Extension to higher-order modes (HOM)
• Techniques to depress HOM (parametric instabilities)
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For more details …


