Setting the Optical Specs for LIGO

Stan Whitcomb

13 March 1998

Large Optical Components ("Core Optics")

- Test Masses
 - >> End Mirror
 - >> Input Mirror
- Beamsplitter
- Recycling Mirror
- Total Number: 20
 - >> WA 4km: 6 Optics
 - >> WA 2km: 8 Optics
 - >> LA 4km: 6 Optics
 - + Spares

Photodetector (dark fringe)

Core Optics Issues

Optical surface imperfections

- >> Radius of curvature: Relative and absolute accuracies
- >> Surface figure errors: Low spatial frequency errors leading to small angle scattering
- >> Microroughness: High spatial frequency imperfections leading to large angle scatter

Absorption

- >> Coatings
- >> Substrates

Thermal Noise

- >> High mechanical Q to minimize thermal noise ($Q \sim 10^6-10^8$)
- >> Size, density, speed of sound,...

Evaluating Optics Performance

- Primary tool is computer model of full recycled interferometer
 - >> FFT-based optical propagation code
 - >> Includes the surface figure of all optical components (either real or simulated)
 - >> Includes OPD of substrates
 - >> Solves for carrier and sidebands for modulation/demodulation
- Contributions from many people
 - >> Original code courtesy of Jean-Yves Vinet and Patrice Hello (VIRGO)
 - >> Extensive modification and enhancement by Partha Saha, Yaron Hefetz, and Brett Bochner
 - >> Used to establish initial LIGO requirements by Bill Kells

FFT Interferometer Model

 Most studies performed with 35 cm x 35 cm window covered by 128 x 128 grid

Realistic accounting of of small angle scatter out to

$$\theta \approx \lambda/(\Delta x) \approx 0.4$$
mrad

Larger angle scatter taken into account with overall loss term

Initial Core Optics Requirements

• Tight matching of all optical parameters arm to arm

Physical	Test Mass		Beam	Recycling
Quantity	End	Input	splitter	mirror
Diameter of substrate, φ _s (cm)	25	25	25	25
Substrate Thickness, d _s (cm)	10	10	4	10
1 ppm intensity contour diameter (cm)	24	19.1	30.2 ^a	19.2
Lowest internal mode frequency (kHz)	6.79	6.79	3.58	6.79
Mass of Suspended Component (kg)	10.7	10.7	6.2	10.7
Nominal surface 1 radius of curvature (m) and g _i factor	7400 g ₂ =.46	14540 g ₁ =.725	∞	9890 g=.9984
Tolerance on radius of curvature (m)	absolute: +220 matching: ±111	-1000, +145	>-720 km convex, >200 km concave	-100, +500

a. For these 45° angle of incidence optics, this is the smallest diameter circle centered on the optic face which is everywhere outside of the 1 ppm intensity field.

Core Optics-Polishing

- Conclusion: rms deviation from sphere < 1nm over 20cm diameter are achievable!
 - >> In some cases, apparent rms ~0.5 nm measured
- With care, measurements at ≤ 1 nm level possible
 - >> Reproducible features seen; Consistent intercomparisons demonstrated
 - >> Small, subtle systematic effects noticed
 - Flat reference vs. curved surface
 - Fizeau path differences
 - Focus effects

CONTOUR INTERVAL ~ 1 NANOMETER SERIAL NUMBER 001

HDOS MEASUREMENT (1.58 nm RMS)

NIST MEASUREMENT (1.75 nm RMS)

LIGO-G971167-00-D

Surface Figure Errors

>> NIST Measurements

Microroughness/Large Angle Scatter

- Largest source of lost optical power in initial detectors
- Industry definition of microroughness is typically tied to measurement instrument
 - >> LIGO "definition" includes spatial frequencies 4.3-7500 cm⁻¹
- For simple "smooth" surfaces,

Scatter Loss =
$$\left(4\pi\frac{\sigma}{\lambda}\right)^2$$

- >> For $\lambda = 1.063 \mu m$, $\sigma = 0.2 nm$, scatter loss ~ 6 ppm
- Point defects cause few ppb loss each
- Conventional wisdom says that substrate roughness dominates over coating nonuniformity at high spatial frequencies

Pathfinder Microroughness Results

 Comparative surface roughness measurements made at REO

	Optic/Surface	Microroughness (Å rms)		
Polisher		Micromap SW (5 location ave.)	PSD area analysis (R. Weiss)	
CSIRO	006/Curved	3.6	3.7	
	006/Flat	2.8	2.7	
GO	005/Curved	0.85	0.6 - 1.4	
	005/Flat	0.88	0.7 - 1.2	

CSIRO microroughness improved to 1-2 Å in initial LIGO production

Coating Uniformity Development

- Coating Uniformity Development: REO
 - >> Goal: Scale up low loss ion beam sputtered coating technology to LIGO diameters
 - >> Preliminary test pieces show good uniformity to 15 cm diameter
 - >> Final verification: Coat Pathfinder optics for 633 nm and test
- Development of new test technique
 - >> Measurements: Doug Jungwirth, Alex Golovitser
 - >> Analysis: Hiro Yamamoto, Bill Kells
 - >> Coatings: Research Electro Optics, Ramin Lalezari, Dale Ness
- Conclusion: Large-scale uniformity at 0.5 nm level is possible with current technology

Uncoated

Difference

Absorption Effects

- Surface distortion
 - >> Important for reflective and transmissive optics
 - >> Typically not important in SiO₂ due to low expansion coefficient
- Thermal lensing
 - >> Important for transmissive optics only
 - >> Important in SiO2 due to low thermal conductivity and high dn/dT
- Heat deposition matches beam profile; temperature gradient from heat flow to optic surfaces (radiatively coupled to vacuum chamber)
 - >> First order distortion is a simple change in radius (or simple lens)
 - >> Gaussian beam profile leads to higher order distortions

Absorption Sources

- Coatings
 - >> Source of absorption unknown
 - >> IR values (typically?) 0.5 ppm
- Substrates: SiO₂
 - >> IR absorption due to OH (usually?)
 - Typically 2-20 ppm/cm
 - >> Shorter wavelength absorption due to metallic impurities (?)
 - Typical value at 514 nm ~ 2 ppm/cm (?)
- Substrates: Sapphire
 - >> Source of absorption unknown
 - >> IR values range from 3-1000 ppm/cm

Absorption in SiO₂

Future Directions

Polishing

- >> Surface figure improvements (factor 5?)
- Coatings
 - >> Higher uniformity, lower absorption (factor 10?)
- SiO₂ substrates
 - >> Understand limits to Q (fundamental limit or technical limit)
 - >> Reduced OH concentration (factor 10?)
 - >> Larger sizes
- Sapphire substrates
 - >> High Q, high density, high speed of sound desirable for thermal noise
 - >> High thermal conductivity good for thermal lensing
 - >> Problems: optical figure, birefringence, homogeneity, absorption,....

SECOND.