LSC Research Directions

LSC 13 August 98 Gustafson, Shoemaker, Strain

1) Are the three technical development groups a useful cut through the issues?

- We feel so
- some interesting questions to resolve (diffractive optics? suspension point interferometers? seismic controls design?)

2) Are the short term incremental steps being taken too small?

Constraints and inputs:

- LIGO I observing run: 2002-2004
- length of time for an upgrade
 - > real downtime
 - > debugging/shakedown
- continued support for R&D; capital equipment for installed hardware
- how long will LIGO II data be interesting to exploit?
- incremental changes 2006-2008 (the 5 steps)?
- Advanced LIGO: should we/must we choose a date?
- magnitude of changes considered reasonable (LIGO II for now)?
- LIGO III to be limited by 'fundamental' limits?

Baseline for 2004 'LIGO II'

improvements to mechanical noise

- triple pendulum
- fused silica suspension
- present stacks
- external pre-isolator

improvements in optical sensing

- low-absorption substrates
- present polishing/coating technology

improvements to the configuration

optimization of mirror transmissions

Technically possible by 2004

additional improvements to mechanical noise

replacement of LIGO I stack; active/passive attenuators

improvements in lasers/optics

- higher laser power (~30-100W)
- associated modulator/input optics/photodiode issues
- larger fused silica test masses
- adaptive thermal de-focussing

improvements to the configuration

- output mode cleaner
- change in modulation scheme (flat frequency response, technical advantage)
- signal recycling

With higher power and associated readout changes, we would be quantum-noise limited for the 11kg test masses

With a signal recycling scheme and the other changes, we would have a ~10x increase in range of detection of NS binaries over LIGO I

Some targets for 'LIGO III'

mechanical noise

- cryogenically cooled suspensions/test masses
- alternative materials for test masses
- large masses
- 10 Hz seismic isolation wall (mix of active and passive)
- monitoring/balancing schemes to suppress thermal noise
- · possibly work on gravity gradients

lasers/optics

- significantly more stored energy
- lower absorption substrates
- lower absorption coatings
- better large scale and small scale (scatter) figure
- modulators/photodiodes to handle powers

configurations

- signal-tuned systems
- adaptive systems

LIGO # BASEZINE @'s 3x107; 100W; 10.7 kg

Page 1

Note 1, Linda Turner, 08/20/98 11:32:44 AM LIGO-G980113-10-M