The

HUSTRAWAN CONSOLTHUM FER

INTERFEROMETRIC GRAVITATIONAL LYANS

Stronory

STATUS READER L 4503

August 13 1998

presenter by

DAND E. NECKELLAND

Physics, The Factors

The Ristalian Named - University

Australian Consortium for Interferometric Gravitational Astronomy

Autonomous Society

Australasian Society for General Relativity and Gravitation (ASGR&G)

Some 80 members - general relativists and gw experimentalists

The Advanced Research Interferometers

ARI - Gingin

- ~ 12 m baseline;
- built on a site which will allow extension to 500 m and eventually 4 km;
- will be be configured to serve as the central station for a future large interferometer;
- in the first instance will be used to demonstrate high performance on a reliable suspended mass instrument
- present status: site being prepared
 - laboratory designed
 - isolators designed
 - topology TBD

The ANU Facility

- can accept max. baseline of 10 m;
- will be built on campus;
- is designed for maximum flexibility to allow a range of R&D projects to be carried out;
- in the first instance it:
 - will house the direct measurement of thermal noise experiment;
 - prototype advanced topologies
- later it will become the R&D facility for AIGO;
- present status: building funds approved
 - design approved
 - completion date Feb. 1999.

Resonant Sideband Extraction in a Sagnac Interferometer

Daniel Shaddock, Malcolm Gray, Karl Baigent and David McClelland

Detailed Experimental Setup

Frequency Response for Different Signal Extraction Mirrors (SEM) Frequency Response for Different Signal Extraction Cavity Detuning SEM=70% Signal Response (dB arb) arm cavity only SEM=50% SEM=70% SEM=90% -20 -25 -30 <u></u> -30 <u>|</u>

frequency (MHz)

frequency (MHz)

2

Sagnac or Michelson?

Control systems similiar in complexity.

Insensitivity to arm length losses in a Sagnac balanced by insensitivity to beamsplitter ratio for a Michelson.

Sagnac unable to store as much energy as a Michelson due to increased losses.

Power Loss: Sagnac arm cavity 3 mirrors

Michelson arm cavity 2 mirrors

Signal Loss: Sagnac signal cavity 4 mirrors

Michelson signal cavity 2 mirrors

Intensity Stabilisation

Inside a feedback loop the free field uncertainty relation for amplitude and phase is no longer valid.

$$\Delta X_1 \Delta X_2 \not\geq 1$$

Cavity field is "in-loop" and so intensity noise can be suppressed below the standard quantum limit without a phase noise penalty.

For an impedence matched cavity the circulating field inside the cavity can be supressed by (up to) 3dB below shot noise.

Ping Koy Lam, Jiangrui Gao*, D. E. McClelland and H. -A. Bachor.

Quantum Optics Group, Department of Physics, The Australian National University.

*Institute of Opto-electronics, Shanxi University, Taiyuan, Shanxi, P. R. China.

Squeezed Vacuum from an OPO

Res BW 30 kHz,VBW 500Hz. Fitted curve is based on 7.1dB squeezing.

Progress towards a system for the measurement of thermal noise

Karl Baigent, Mal Gray, Daniel Shaddock, David McClelland

Department of Physics and Theoretical Physics Faculty of Science Australian National University

Thermal Noise Measurement System

Aim: Develop a benchtop prototype of a system capable of measuring the thermal noise of test masses.

Measure mirror motion due to thermal noise using a Fabry-Perot cavity and a Pound-Drever signal readout.

To successfully measure thermal noise there are a number of other noise sources which must be minimised.

Laser frequency noise

Classical radiation pressure noise (due to excess laser intensity noise)

Thermal Noise Measurement System

4.4 Readout sensitivity

Frequency noise

$$FWHM = 174 \text{ kHz}$$

P_i = 35 mW, η = 0.85

$$\Delta L = 1.4 \times 10^{-21} \text{ m } / \sqrt{\text{Hz}}$$

Readout shot noise

F = 10 000, L = 0.01 m
P_i = 30 mW,
$$\eta$$
 = 0.85
 $\Delta L = 7.2 \times 10^{-20}$ m $/\sqrt{Hz}$

Radiation pressure noise

Coherent input M = 10 kg

$$\Delta L = 8.1 \times 10^{-20} \text{ m } / \sqrt{\text{Hz}}$$

@ 10 Hz

5. Conclusions

Characterized the laser

Constructed and tested reference cavity

Frequency stabilization operating

Designed new intensity stabilization system

Sensitivity of △L < 10⁻¹⁹ m /√Hz

AIGIC Vibration Isolation Configuration

Juli, J. Wutudhood, D.G. Blair. et 1 ACIGN UWA

Horizontal pre-isolator

Vertical pre-isolator

Theoretical curves and measured performance

Second stage horizontal pre-isolator

Horizontal System Inverse pendulum Active tilt control actuation isolation (lock for passive) precision Scott-Russel horizontal feedback pre-isolation Standard isolation stack

Second stage vertical pre-isolator

Transfer function of a low frequency isolator without pre-isolation

Note 1, Linda Turner, 08/20/98 01:11:29 PM LIGO-G980113-17-M