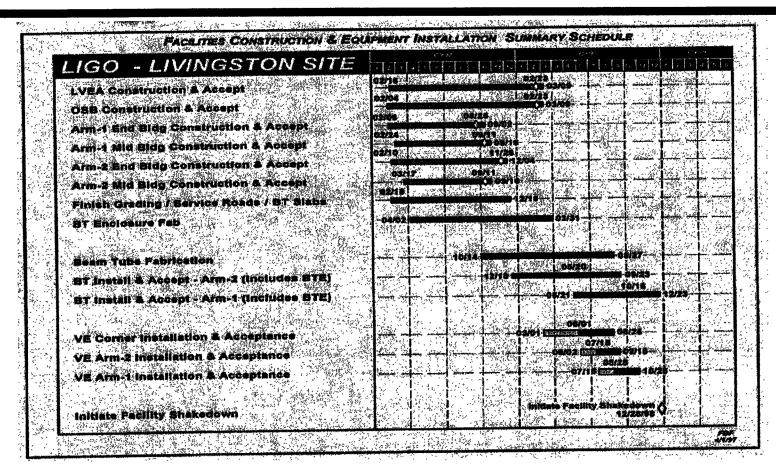
Status of the LIGO Livingston Observatory

Topics Presented

- Status of facilities construction, installation, and commissioning
- Remaining work to be accomplished
- Staffing
- Plans and preparation for detector installation
- Educational outreach



Introduction

- The LIGO Livingston Observatory (LLO) is just completing major facility construction and acceptance.
- Civil construction, beam tube work, and vacuum equipment should all be completed by year end or shortly after.
- Part of our effort is now directed toward preparation for detector installation.
- We are also expanding relationships with institutions in Louisiana to increase the scope of scientific collaboration and to develop educational outreach opportunities.

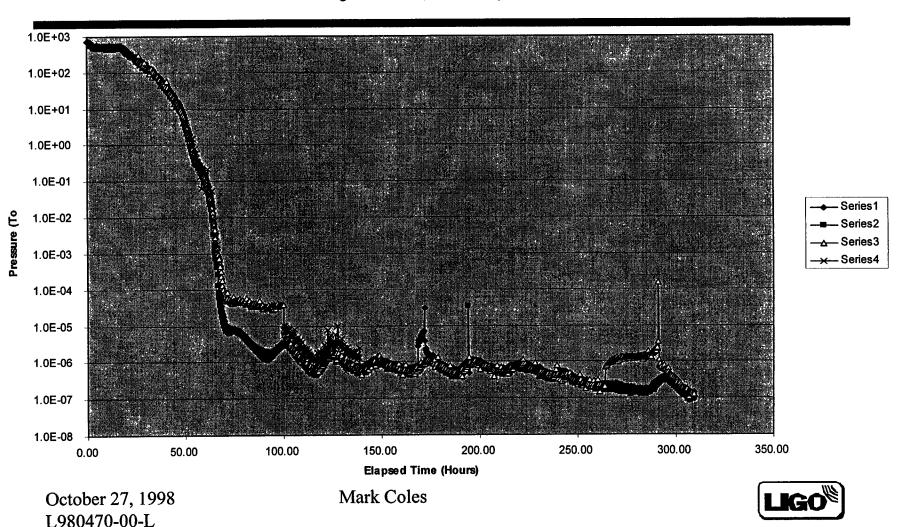
Construction Schedule - Livingston

October 27, 1998 L980470-00-L

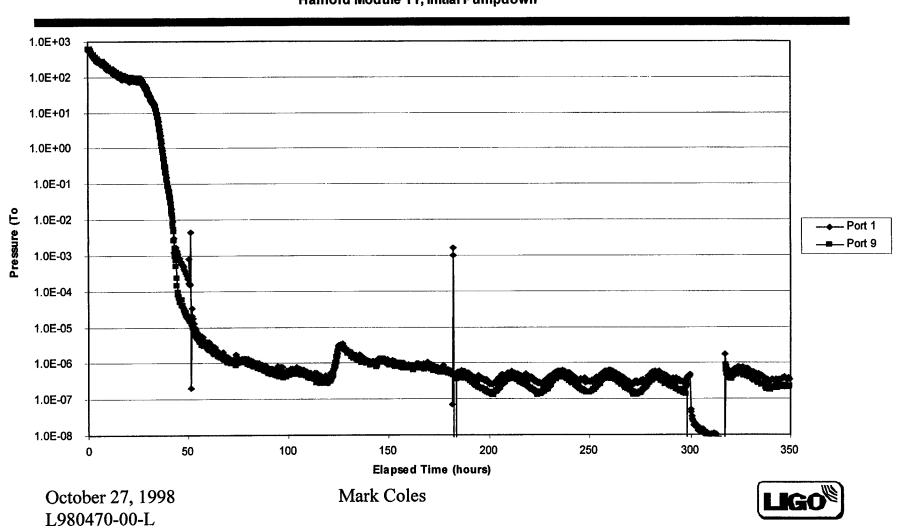
Beam Tube

Accomplishments since last review:

- Completion of all beam tube fabrication
- Completion of Y arm installation
- Alignment of X and Y arm
- Installation of all beam tube enclosures
- Pump down and acceptance of X arm
- Pump down of Y arm acceptance in progress
- Vent of X arm using purge air system.


Beam tube acceptance

- Right arm (X-arm) pumped down and accepted as an entire arm.
- Acceptance complicated by initial problems with site electrical power and X mid-station gate valve accident
 - Electrical power:
 - Initially phase imbalances of up to 10% caused trips of pumps and HVAC
 - Situation remedied by placement of substation close to site by utility provider (DEMCO). Now have phase imbalance of less than 0.5%
 - Gate valve:
 - gate accidentally freewheeled closed while electrical drive was being connected at right mid-station


LLO Beam Tube Pump Down

Livingston X-Arm, Inital Pumpdown

LHO Beam Tube Pump Down

Hanford Module Y1, Initial Pumpdown

Livingston X arm vacuum tests

Table 1: Gas model in the 4km volume of the Livingston x arm in 10^{-8} torr liters/sec

Gas	7/15/98	7/23/98	7/28/98	7/30/98	
			2.66x10 ⁻⁶ air lk in x2	2.66x10 ⁻⁶ air lk in x1	
H ₂	1490±13	1020±3.8	1740±24	1840±35	
CH ₄	2.08 ±0.13	2.93 ±0.22	15.4 ±0.59	9.3 ±0.69	
N ₂	25.8±3.4	17.9±1.9	312±6.9	263±9.5	
co	29.9±3.0	15.4±2.4	39.2±7.9	99.0±9.1	
02	7.9±0.3	1.5±0.2	28.5±0.8	31.7±0.9	
۸	0.13 ±0.01	0.016±0.007	0.52±0.03	0.75 ±0.04	
CO ₂	261±6.6	87±2.3	360±4.9	594±16	
NO	179±3.2	102±1.4	374±9.2	690±12	
C₂H ₆	0.56 ±0.05	0.31±0.06	0.12 ±0.09	0.37 ±0.19	
Temp C	28 (cst)	29.1	32.2	34.5	

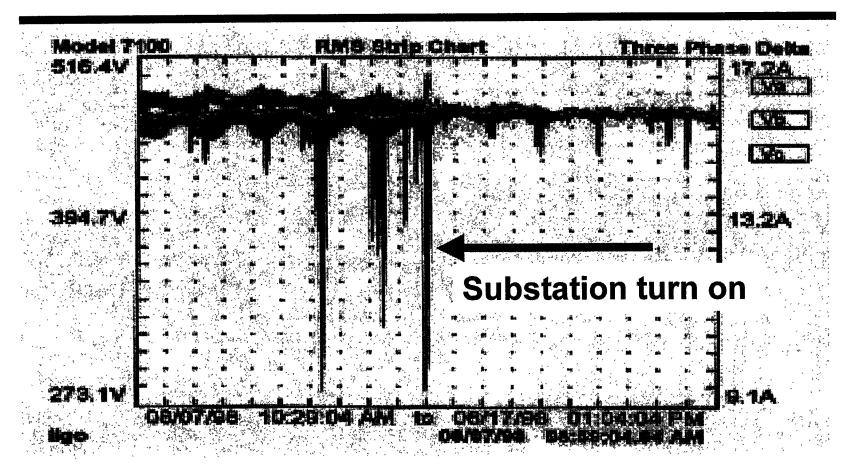
Table 2: Estimated upper limits for air leak in entire arm

from	cracking fraction for air	air lk in 10 ⁻⁷ torr liters/sec
N ₂	1.0	1.8
02	0.096	1.6
A. S	0.0021	3.4

Table 3: Prebake outgassing rates at 23C

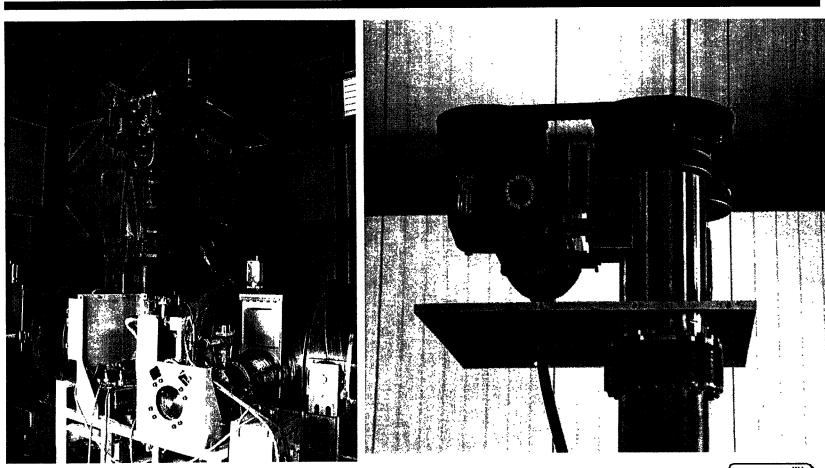
gas	T ₀ K	J(296K) torr lite	ars/sec cm ²
H_2	8000	6.0 x 10 ⁻¹⁴	Acceptance criteria
00	10000	8.2 x 10 ⁻¹⁶	leak rate< 2x10-7
CH ₄	10000	9.1 x 10 ⁻¹⁷	The state of the s
CO ₂	10000	1.3 x 10 ⁻¹⁴	Addressed Accounting on aggregate to

Substation provided by utility (DEMCO)



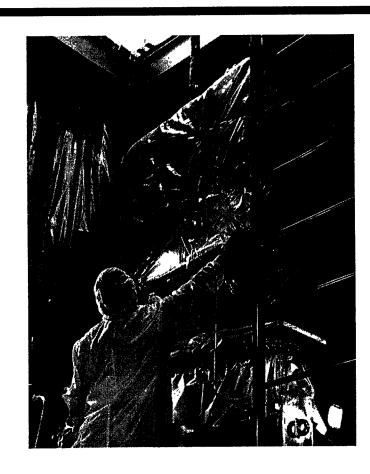
October 27, 1998 L980470-00-L

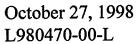
Mark Coles

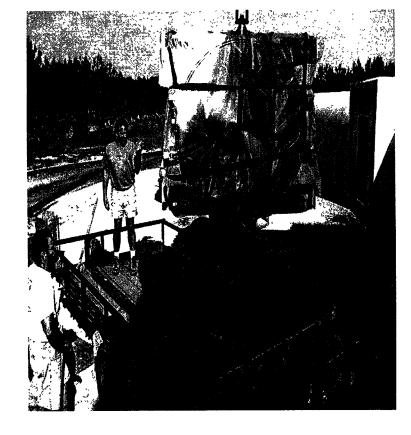

Site Electrical Power

October 27, 1998 L980470-00-L

Photo of gate valve

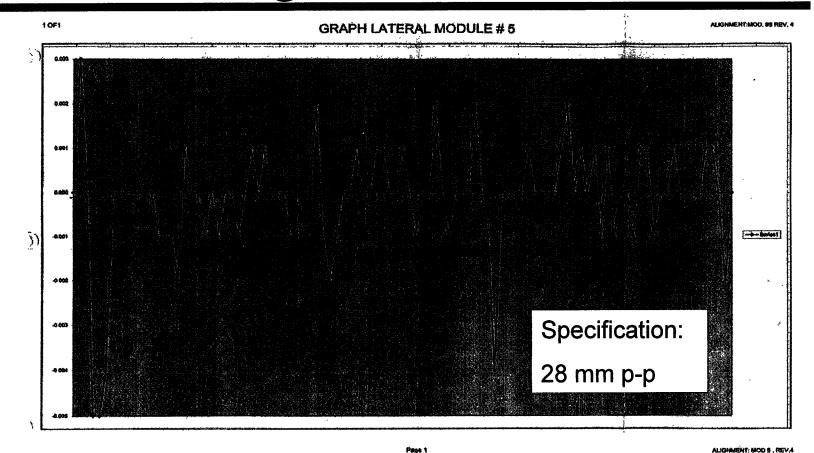

October 27, 1998 L980470-00-L


Mark Coles



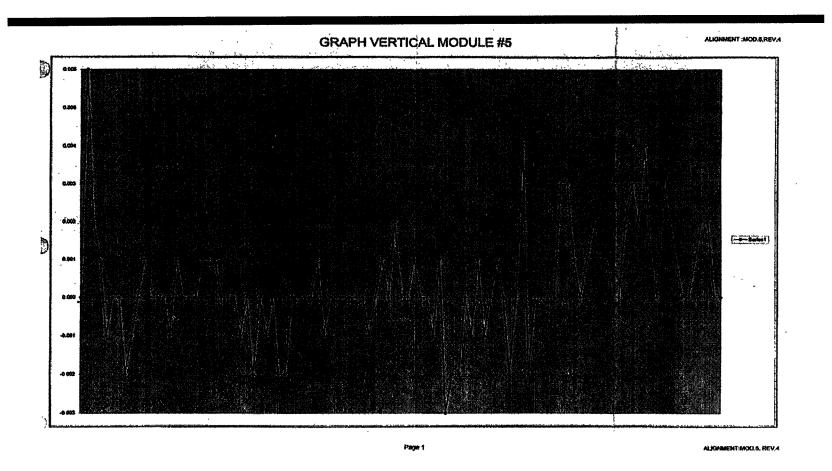
Gate valve removal

Mark Coles



Lessons Learned

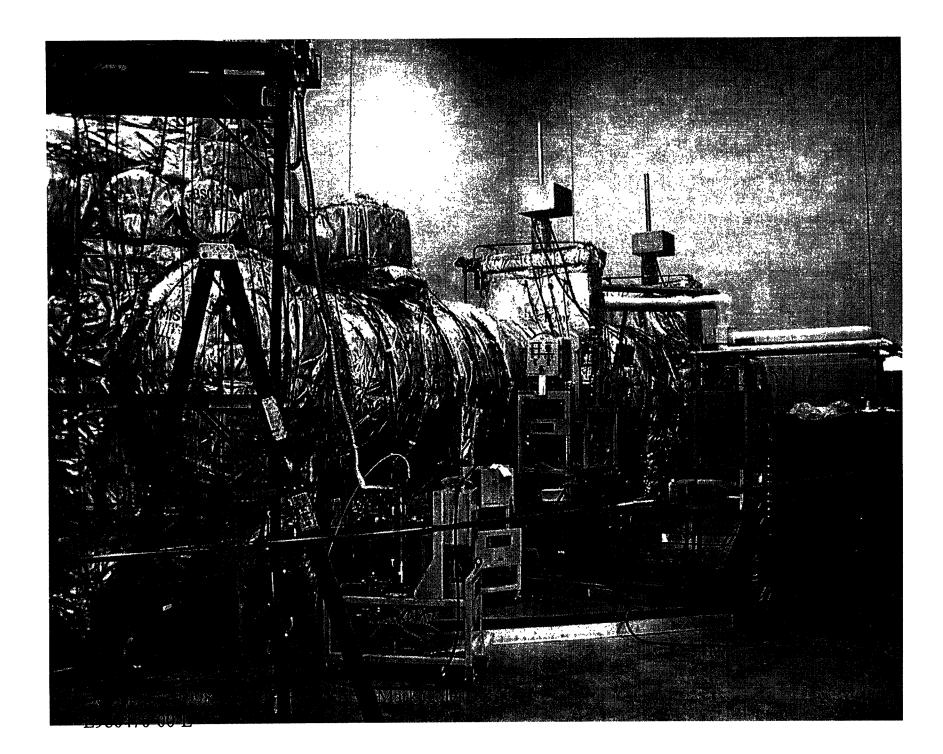
- Damaged gate valve (repair as part of planned inspection of all gate valves)
 - repair damaged stops and wheels
 - inspect gate
 - reinstall and adjust gate gap
- Implementation of work permit system:
 - identification of responsible authority
 - submission of procedures
 - use of lock-out tag-out
- regular permit meeting held to authorize all work
 - permits and procedures kept on file


Representative beam tube alignment data

October 27, 1998 L980470-00-L

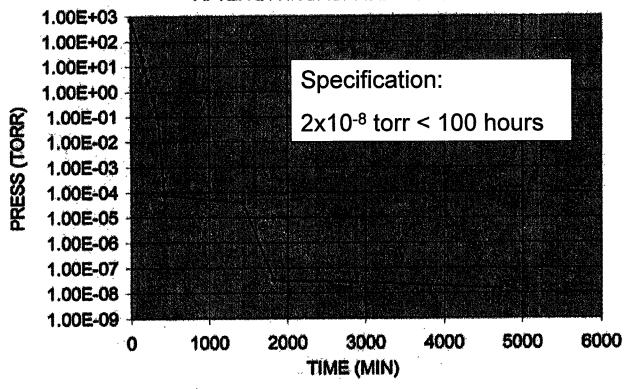
Vertical beam tube alignment data

October 27, 1998 L980470-00-L



Vacuum Equipment

Summary of achievements since last review


- Delivery of all vacuum chambers, tanks, and pumps
- Installation and grouting of chambers and tanks
- Delivery and integration of CDS cryo control system
- Bake out and acceptance of right end station
- (Bake out of left end station in preparation)

End station pump down

LA RIGHT END STATION PUMPDOWN 10/5/98-10/8/98 AFTER 24 HR BACKFILL / PURGE

October 27, 1998 L980470-00-L

First Test Results: Right End Station Bake Out

- Interim report from PSI for each isolatable volume
- Final reports submitted at job closeout.
- Tests witnessed by cognizant LIGO engineer.

Partial Pressure Calculation Acceptance of the Bakeout with respect to Air Signature and Partial Pressures

Deta:9/23/98
Test ID:LA RIGHT END STATION
PSI Engineer:8,MOTEW

AMU	Franci transmission efficiency vert Na	E jame lónizatlon afficiency wit filk	Sec_ame; seriettivity (Torr/A)	/ (umu) Ion current (A)	PP (sees)
2	~ :	· •	12.94	4.00E-10	5,18E-09
16	0.57	1,60	17.00	5,00E-12	4.01E-11
18	0.64	1/12	17.00	.∉ 8,20E-11	9,93E-10
28			17.00	4.70E-11	7.99E-10
	1.57	1.42	17,00	1,405-12	2.10E-11
all others	*	*	17.00	4,36E-11	7.41E-10

Primary :	Total	LIGO Contract Limits	Actual	Pása
	Pressure:	2,00E-08 Torr	7.77E-09 Torr	Yes
Samuelair	Others except	ş		
	Hz & HzO;	3.00E-09 Torr	1.60E-09 Torr	N/A

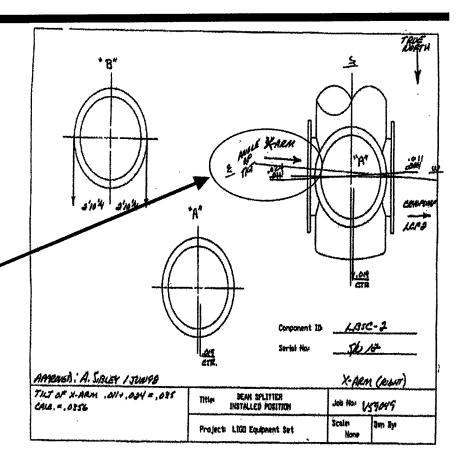
LIGO:

PSI:

Right end station boil off test

- Contract requires > 90 days between fill for each cryopump system. (pump, tank, control system)
- Similar tests to be done for left end station and both corner station systems.
- Tests witnessed by LIGO cognizant engineer

		LIQUID Ref. Spe	IITROGEN c. VO40-24	CONSUMPI XX	TION TE	Ħ
Station	LA RIGH	IT END	Cryopun	p LCP4		
Test	Start	Firest	•			
Date .	922/98	9/26/98		' '		
Time	1200	1400				
Storage Tank	LDW4	,, ,	1	,		
14400		otal volume				
13700	gallone	it full trycoc	,			•
13700 × 0.95 ×	13015	unible g	illons		('	
300	in.H201	evel Indicat	on of full tr	yoock	,	
45.67	gallona /	In.H20			•	
Results			;		;	
Starting levels	260	in.H2O		,	,	
Ending lighter	245	In.H2O	,			
Dunition**	122	Hours				
Liquid consumed=	548.0	gallons			•	
Tank protestre	12	pelg	4.49			
Ave.confumption for	TOUR CLITIC	Kilim	4,48	Ballyion		
Required duration fo	r usable gr	dione"	90.0	days		
Projected duration fo	x usable g	allone=	120.7	days		
Tool studies			PASS			
PSI SMATE		N N	*			



Chamber Alignment Data

•all chambers have been positioned by PSI and alignments have been checked.

•alignment documents are submitted for each chamber.

•spec = 0.080"

Remaining VE Activities

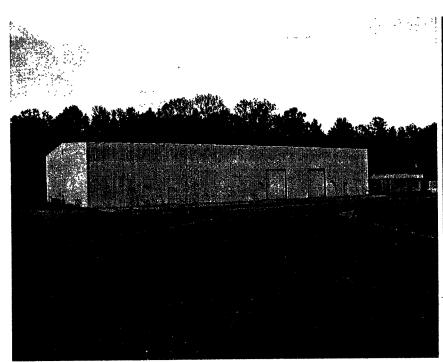
- Bakeout of Y end station (anticipate complete < 10/31)
- Bakeout of corner station
- Boil off tests
- Inspection/repair of all gate valves
- Formal submission and review of acceptance data

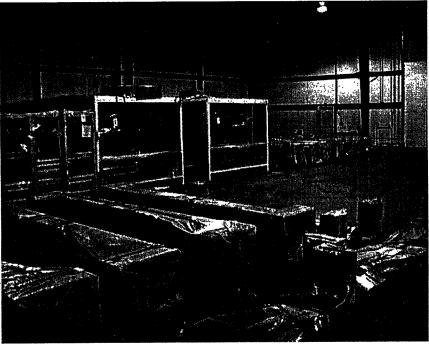
Building and site infrastructure

- Beneficial occupancy since last review. Building Contractor (Hensel Phelps) is now offsite.
- Acceptance procedures QA
 - status
 - initiated a QA program prior to acceptance of the building to study:
 - Electrical,
 - mechanical,
 - building control,
 - power consumption and optimization of power factors

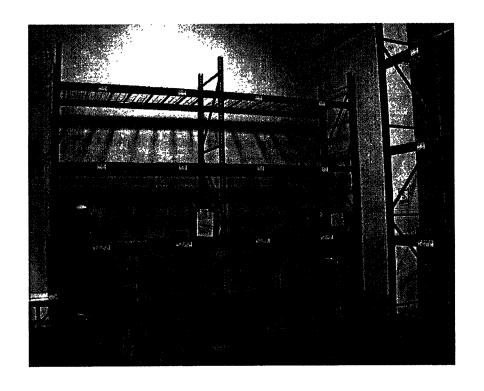
(Note that there are no building inspectors in Livingston parish, so QA needed to insure code requirements .)

- Preliminary indications are that we have some deficiencies in the electrical work that need to be remedied.
- Other outstanding issues on which we are working
 - Maintenance contract bids received, expect to have in place < Dec. 1
 - panel blistering
 - vault leaks
 - · Access road
 - Erosion control and landscaping


Preparations for detector installation


Staffing Plan

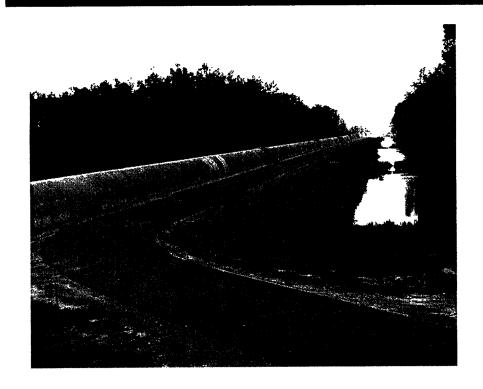
- Two scientists now resident (Coles, Rizzi)
- Offer extended to one additional scientist
- 50% of Site Manager (Gerry Stapfer) and 50% of Site Administrator
 (Bonnie Wascom) this FY
- 5 other resident staff now fulfilling construction related activities that will transition to detector installation and site sustaining activities.
- We plan two add 2 additional engineering staff in FY99
 - electrical engineer
 - software engineer
- We plan to add two scientific staff as joint appointments with the Univ. of Florida in FY99.

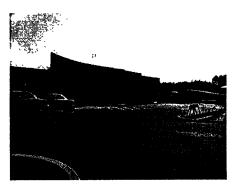

Staging building

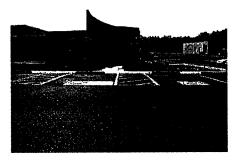
Material handling

October 27, 1998 L980470-00-L

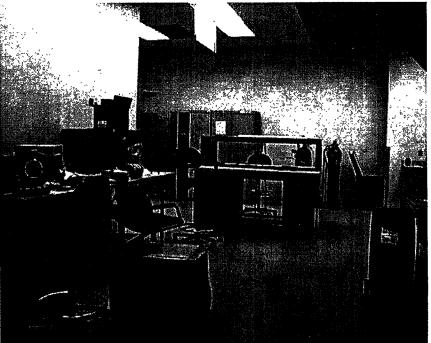
Multipurpose room






October 27, 1998 L980470-00-L

Asphalt roads along arms



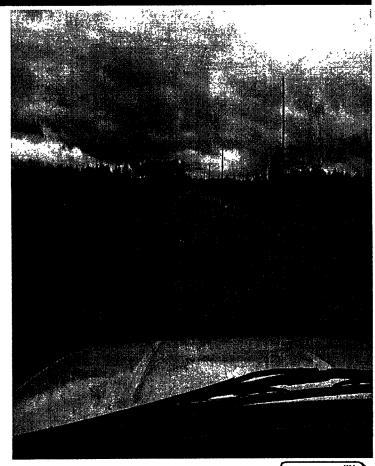
October 27, 1998 L980470-00-L

Lab set up

Electrical lab

Mechanical lab

October 27, 1998 L980470-00-L


State provided access road -

We are working with LSU and the La DOT to make sure that we get an all weather road.

October 27, 1998 L980470-00-L

Mark Coles

FY 99 LLO Staffing Detail

Operations Staff	Name	FTE
Observatory Head	Coles	1
Senior Scientist	Offer extended	0.5
Staff Scientist	Rizzi	1
Staff Scientist	Shu (U of FL joint appt)	0.25
Staff Scientist	Yoshida (U of FL joint appt)	0.25
Observatory Manager	Stapfer	1
Administrator	Wascomb	1 -
Sr. Mechanical Engr.	Sibley	1
Electrical Engr	Open	0.5
Software Engr.	Open	0.5
Optics Specialist	Kern	0.67
Operations Specialist	Riesen	1
Operations Specialist	Svoboda	1
	TOTAL	9.67
Bakeout Staff	Name	FIE
Vacuum Specialist	Franklin	1
Operations Specialist	Stiff	I
Long term visitors		t me anny a record a side and desirable made the
TomEvans	MIT	

Detector Installation Preparation Activities

- Vacuum preparation and optics labs:
 - Clean areas
 - Install cabinets, optics tables, low conductivity water system, laser curtains, vacuum bake out oven, etc.
- Procure and set up electrical lab, mechanical lab
 - Install benches, test equipment, tools, parts, cables, consumable items, etc.
- Set up material handling, tracking, inventory systems
 - shelves, pallets, lifting eqpt, forklift, clean room handling eqpt and supplies, etc.
- Set up control room
- Set up open office areas for visiting staff
- We are learning from Hanford's experience so that when we do things in Livingston we benefit from that prior experience.

Educational Outreach

- Pursuing opportunities to provide educational outreach resources to the local community.
 - Louisiana State University
 - Southeastern Louisiana University
 - Louisiana Tech University
 - Loyola University
 - East Baton Rouge, Livingston, and St. Tammany Parish schools
 - Louisiana School for Math and Science
 - LaSIP (Louisiana Systemic Initiative)
 - Louisiana Board of Regents
- Plan to have on-site REU opportunities summer FY99
- Some student hiring during school year

Summary of Activities Underway

- Completion of major subcontracts and remedy of remaining construction problems
- Preparation for detector installation scheduled to begin in January
- Development of educational outreach partnerships with the local community

