Core Optics Components: Requirements and Status

Jordan Camp March 4, 1999

Requirements / Status Overview

Parameter	Requirement	Status	Interferometer Coupling
Surface Figure	< 20 nm P-V	< 10 nm P-V	Increased Power at Dark Port (Shot Noise)
Surface Error (Power, Astigmatism removed)	< 1 nm rms over 8 cm diameter	< 1 nm rms over 20 cm diameter	
Coating Uniformity	consistent with above	5 - 10 nm P-V < 1 nm rms over 8 cm diameter	as above

Requirements Overview (cont.)

Parameter	Requirement	Status	Interferometer Coupling
Scatter Losses µroughness + defects	< 50 ppm	< 20 ppm	Loss of Power in FP arms
Absorption Losses Bulk Surface (coating)	< 5 ppm / cm < 1 ppm	~ 3 ppm / cm ~ 0.5 ppm	Thermal Lensing -> Loss of Sideband Power

Metrology of Coated Optics G. Billingsley, M. Hrynevych

- Phase Measuring IR interferometer operating at Caltech
- Comparison of Caltech measurements with NIST, CSIRO indicates metrology consistency at ~1 nm rms level
- QA: All Core Optics measured at Caltech before LIGO installation
- Metrology Results As Expected
 - >> Polishing achieves 1 nm rms level
 - >> Coating adds ~ 5 nm P-V "bowl shaping", or ~ 3% ROC change

Caltech, CSIRO Comparison of Pathfinder Optic

Recycling Mirror Before and After Coating

Radii of Curvature

Table 2: Measured ROC						
Optic	ROC uncoated (CSIRO)	ROC coated (Caltech)	Coating "Bowl Shaping"			
RM01	15.12	14.61	7 nm			
ITM01	13.38	13.23	2 nm			
ITM02	13.61	13.28	5 nm			
ITM03	13.41	13.07	5 nm			
ITM04	13.48	13.22	4 nm			

- ~ 2% accuracy (3 nm) in ROC measurements
- Measured coating curvature as expected from Pathfinder

Scatter Losses

- Microroughness
 - >> < 10 ppm CSIRO
 - >> < 2 ppm GO
 - loss inferred from REO micromap measurement

• Surface Defects

- >> measured with Core Optics Loss Scanner
- \rightarrow < 5 ppm total

ITM Scatter Measurement S. Bell, D. Li

Loss from defects < 5 ppm

Absorption Loss : Substrate G. Billingsley

Absorption measured by photothermal deflection

Absorption Loss : Coating D. Li

- Cavity mode frequency spacing depends on absorption
 - >> Shift of frequency with stored power allows absorption to be inferred

- Absorption of REO coatings ~ 0.5 ppm
 - >>Challenge for advanced LIGO

Core Optics Cleaning Procedures H. Armandula

- Optics cleaned with soak in hot Alcanox detergent
 - >> Detergent removes hydrocarbon layers from surface
 - >>"Steam Test" to see if water wets the surface
- In Situ cleaning with CO₂ Snow
 -)) CO_2 ice particles remove particulates from surface

 Both methods qualified by cavity ringdown loss measurements

Summary

- We got glass
- We got coatings
- We know how to keep 'em clean
- We're ready!

