

My talk is in two parts.

The first part talks about the physics and status of the LIGO Project

The second part is about the Project Management systems that have been use to manage the LIGO Project.

Einstein's Theory of Relativity predicts freely propagating Gravitational Waves.

•Conservation Laws dictate that these waves will be quadrupole waves

•To generate Gravitational Waves requires very heavy objects accelerating very quickly

•Gravitational Waves are not absorbed by other astrophysical objects

•The LIGO Project is building three Gravitational-Wave Observatories in Washington state and Louisiana

Electromagnetic Waves	Gravitational Waves
Space as medium for field	Spacetime
Accelerating Charge - incoherent superpositions of atoms, molecules	Accelerating aspherical mass coherent motions of huge masses
Wavelength small compared to sources provides images	Wavelength large compared to sources—no spatial resolution
Absorbed, scattered, dispersed by matter	Very small interaction, no shielding
10 ⁷ Hz and up	10 ⁴ Hz and down
Detectors have small solid angle acceptance	Detectors have large solid angle acceptance

Electromagnetic Waves and Gravitational Waves are very different.

•Very different information, mostly mutually exclusive

•Difficult to predict GW sources based on Electromagnetic observations

Gravitational-Waves have been measured indirectly

Hulse and Taylor in 1974 looked at a neutron star binary where one of the stars is a pulsar

- •One lightyear = 3×10^{15} meters
- •One parsec = 3.26 lightyears ~ 10^{16} meters

- •Parsec = 10¹⁶ meters
- •Speed of light = 10⁸ meters/sec
- •One lightyear = 3.15×10^{15} meters
- •One parsec = 3.26 lightyears
- •r ~ 10 megaparsecs

One parsec = 3.26 lightyears ~ 10^{16} meters

An interferometer provides a way to compare the relative lengths of the two interferometer arms.

If we suspend the mirrors an interferometer provides a good way to measure the distortion of space caused by Gravitational Waves.

The best length of an antenna for measuring gravitational waves is on the order of 100 kilometers.

A practical length for an interferometer is a few kilometers.

Light storage provides a way to increase the effective length of the interferometer arms.

LIGO uses Fabry Perot cavities with an effective N \sim 100 where N is number of times photons hit the mirror.

Design characteristics of the LIGO interferometers.

•Arm lengths are four kilometers.

•The light used is infrared with a wavelength of approximately one micron.

•To get the required sensitivity of 10^{-18} meters, it is necessary to measure a fringe with a precision of one part in 10^{10} .

•Most of the light in the interferometer is reflected back towards the source. Since we do not want to waste this light, LIGO uses a "Power Recycling" mirror the reflect the light back towards the Beam Splitter. This provides a power gain in the interferometer of approximately 50.

There are two LIGO sites, one is in Hanford, Washington, the other is in Livingston, Louisiana.

•There are two interferometers in Hanford, one is two kilometers in length, the other is four kilometers long.

•Multiple interferometers provide a way to compare signals and reject noise that may masquerade a gravitational wave.

•Multiple sites provide some capability for identifying the direction of the source.

•Additional interferometers in Italy, Germany, Japan, Australia will permit us to create a map of the sky similar to astronomy done with electromagnetic waves.

This chart shows the sources of noise that limit LIGO sensitivity.

SEISMIC NOISE - Motion of Earth - LOW FREQUENCIES

THERMAL NOISE - *Kbt* - **INTERMEDIATE FREQUENCIES**

SHOT NOISE - Photon Counting Statistics -HIGH FREQUENCIES

Isolated Free Mass at $f >> f_o \sim 1 hz$

So what if we do detect Gravitational Waves?

Gravitational Waves provide a direct test of General Relativity.

Gravitational Waves also will provide a new, different view of the universe

MRE - Major Research Equipment

Fiscal Year	Construction	R&D	Operations	Advanced R&D	Total
Through 1994	35.9	11.2			47.1
1995	85.0	4.0			89.0
1996	70.0	2.4			72.4
1997	55.0	1.6	0.3	0.8	57.7
1998	26.0	0.9	7.3	0.5 + 1.3	36.0
1999	0.2		20.9	2.3	23.4
2000			21.1	2.6	23.7
2001			19.1 (10 months)	2.7	21.8
Total	272.1	20.0	68.7	10.2	371.0
All fundina	shown in "then year"	\$Millions			

	Project Schedule					
1996	Construction Underway mostly civil construction (buildings, slat	DS,)				
1997	Facility Construction beam pipe and concrete enclosure, vacuum chambers					
1998	Construct Detectors completion of vacuum systems					
1999	Install Detectors interferometer systems into vacuum system					
2000	Commission Detectors First light in arms, subsystem testing					
2001	Engineering Tests Sensitivity, engineering runs, characteriz	zation				
2002	LIGO I Run Begins $h \sim 10^{-21}$					
L IG O	19	LIGO-G990037-00-P				

Pictures Satellite View • LIGO Hanford LIGO Livingston • Vacuum Equipment in Livingston • Seismic Isolation BSC Chamber Prestabilized Laser • • Core Optics • Core Optics Infrared Metrology • First Suspended Large Optic First Installation of Large Mirror • • Adjusting Installed Recycling Mirror LIGO-G990037-00-P 20 L IG O

Show Organization Chart Very Shallow Organization for a Project of this size

LIGO exists embedded into the Caltech

Environment.

Caltech provides a number of Administrative Functions including...

We have completely swamped these systems

•Financial Reporting (financial systems originally unable to handle 7 digits on a check)

•Procurements

•Payments

•Property Accounting

•Labor tracking (there is only limited reporting)

Caltech also not prepared for multiple sites

Another characteristic of the University Environment is the "R&D" mentality.

- the need to freeze designs and build something

- the need to commit large subcontracts

NSF Reporting expectations were not a significant constraint.

OpenPlan and COBRA fairly tightly integrated.

Software selected based on reporting capability and ability to work with PERT

Charts (actually never fully implemented). The original intent was to have the scheduling package available to the task managers for planning purposes.

•Requires specialists.

•Does not operate in UNIX environment

Reporting Level	Cumulative To Date				At Completion			
Work Breakdown Structure	Budgeted Cost of Work Scheduled (BCWS)	Budgeted Cost of Work Performed (BCWP)	Actual Cost of Work Performed (ACWP)	Schedule Variance (2-1)	Cost Variance (2-3)	Budget- at- Completion (BAC)	Estimate- at- Completion (EAC)	Variance- at- Completion (6-7)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1.1.1 Vacuum Equipment	43,564	43,564	43,760	-	(196)	43,564	43,900	(336
1.1.2 Beam Tubes	47,203	47,203	47,021	-	182	47,203	46,967	236
1.1.3 Beam Tube Enclosure	19,991	19,986	19,415	(5)	571	19,991	19,487	504
1.1.4 Facility Design & Construction	52,293	52,430	51,639	137	791	52,500	52,588	(88
1.1.5 Beam Tube Bake	3,470	3,178	3,584	(292)	(406)	4,879	5,600	(721
1.2 Detector	54,848	45,968	39,420	(8,880)	6,548	57,819	56,743	1,076
1.3 Research & Development	23,490	23,490	21,552	-	1,938	23,490	23,470	20
1.4 Project Office	29,373	29,373	28,166	-	1,207	34,310	34,577	(267
Subtotal	274,232	265,192	254,557	(9,040)	10,635	283,756	283,332	424
Contingency						-	8,768	(8,768
Management Reserve						8,344	-	8,344
Total	274.232	265,192	254.557	(9.040)	10.635	292,100	292,100	

Even though risk assessment used to establish contingency at lowest level, it was not left there, rather is was lumped and held at the project level.

At the end of any Project, they always ask you about "lessons learned!"

This is no exception, Beverly asked me to comment on lessons learned during the LIGO Project.

This is difficult to answer.

The Project Management and Control System is a simple Feedback Control System.

This is not "Brain Surgery!"

What makes it difficult, and the systems fail, are all of the external influences.

"See first that the design is wise and just: that ascertained, pursue it resolutely; do not for one repulse forego the purpose that you resolved to effect."

William Shakespeare

L IG O

LIGO-G990037-00-P

I believe that this was DOE Project -(minus)640-0038

I've added a few of these to the Control System chart.

These include

•the Project Culture (or lack thereof)

•hidden agendas

•the expectation that the system provides the management rather than the managers.

I am sure that you can think of others.

Each Project is unique. This means that I probably don't have many "lessons" useful to another project like SNS.

A rigid interpretation of the CSCSC dictates an independent EAC right from the beginning of the Project. This while the BAC is still being developed.

LIGO managed contingency, not the NSF

