A Path to LIGO II

Lasers - ANU, Lightwave, LIGO a	and Stanford	
Requirements		
Potential Designs		
Ancillary Optics - LIGO/Florid	a	
Phase modulators	Optical isolators	
Telescopes	Mode Cleaner	
Thermal Modeling - Beausoleil, Florida, GEO, LIGO and Stanford		
Adaptive Optics - LIGO/MIT, s	stanford	
Lasers and Optics Working	Group Milestones	
Materials for Core Optics an	nd Beam Splitters	
Growth	Figuring & Polishing	SCANNE
Evaluation	Fabrication	
Conclusion		

LIGO Scientific Collaboration Lasers and Optics Working Group

LIGO-G990058.00-R

E custos Front Sug

```
Amplitude Noise
10<sup>-8</sup> [1/√Hz] (100 Hz)
```

10⁻⁸ [1/√Hz] (1khz)

Frequency Noise $10^{-8} [Hz/\sqrt{Hz}] (100 Hz)$

 $10^{-8} [Hz/\sqrt{Hz}]$ (1khz)

Amplitude of higher order modes $4x10^{-8} [1/\sqrt{Hz}] (100 \text{ Hz}) \qquad 4x10^{-8} [1/\sqrt{Hz}] (1\text{ khz})$

Power 50 - 200 [Watts]

<u>LIGO I - 10 watts</u> Lightwave 10 Watt Master Oscillator Power Amplifier

<u>LIGO II - 100 watts</u> Coherent addition or injection chaining

Injection Locked Unstable Resonator Nd:YAG - 100 watt

Power Amplifier for LIGO I Laser to 100 watt "class"

Power - Coherent Summation

Power - Unstable Resonator

Power - MOPA

Master oscillator power amplifier

Technical Challenges

Power Noise (Filtered by pre-mode-cleaner) Extraction Efficiency (Operate > saturation intensity)

Advantages

Scaleable No optical resonances Coherence Control Soft failure mode Modular

THE Stanford GRAVITY = WAVE GROUP

Power - Face versus Edge Pumping

WAVE GROUP

Edge Pumped Slab Oscillator

Master Oscillator Power Amplifier

MOPA Power Fluctuations

Ancillary Optics

Phase Modulators

Optical Isolators

Mode Cleaners

,

Telescopes

Electro Optic Modulator Requirements

Requirement Power	LIGO I 10 W	LIGO II 100 W	Consequences Thermal focussing, Depolarization, Damage!
Modulation Frequency	<100 MHz	<100 Mhz	Piezoelectric Resonances
Modulation Depth	0 <g<1< td=""><td>0<g<1< td=""><td>Higher order sidebands</td></g<1<></td></g<1<>	0 <g<1< td=""><td>Higher order sidebands</td></g<1<>	Higher order sidebands
RF Amplitude modulation	<10-3	< 10 ⁻³	Alignment

Thermal Modeling

MELODY Package - Ray Beausoleil

Optical model including thermal focussing in core optics and beamsplitter

LIGO I, GEO I, Dual recycling

Validation underway

,

Adaptive Optics

Top-Level requirements review	1Q99
Design summit	3Q99
Preliminary design review	1Q00
Component prototypes	1Q01
Fabricate engineering prototypes	1Q02
Final design review	1Q03
Fabrication complete	4Q03
Installation complete	2Q04
Commissioning	4Q04

Desirable properties for core optic material

Low thermal noise

- Low mechanical loss
- High density
- High speed of sound

Low thermal distortion of laser light

- Low optical absorption
- Low dn/dT
- Low coefficient of thermal expansion
- High thermal conductivity
- High heat capacity

Must also be :

Available in suitable sized pieces

Capable of being figured and polished to high specs

Bulk absorption - Blair, Boccara and Fejer

Surface figure - Caltech LIGO

Micro roughness and scatter - Caltech LIGO

Coating absorption - Bocarra and Fejer

Mechanical loss of YAG

- Fabricate cylinder of YAG , dimensions:
 - 2.5 cm diameter, 10.2 cm long
- Frequency of fundamental longitudinal mode: 38.9kHz

Measurement technique

Results and interpretation

- Q of fundamental longitudinal mode (10 ringdowns): (2.18 +/- 0.03) x 10⁷
 i.e. mechanical loss (4.59 +/- 0.03) x 10⁻⁸
- Possible interpretations:

(a) Limited by losses associated with suspension system e.g. frictional losses at breakaways

 Next stage - suspend sapphire sample of higher (known) Q in system - check for presence of excess loss

Comparison with fused silica, sapphire and silicon

	Fused Silica	Silicon	Sapphire	YAG
↑Density, r (<i>kgm</i> -³)	2.2 x 10 ³	2.33 x 10 ³	3.98 x 10 ³	4.55 x 10 ³
† Speed of sound, c (ms^{-1})	5720	8415	10025	7887
$\int dn/dT (K^{-1})$	8.7 x 10 ⁻⁶ *	-	1.36 x 10 ⁻⁵ *	7.3 x 10 ^{-6 *}
\downarrow Coeff. Therm. Exp. α (<i>K</i> ⁻¹)	5.1 x 10 ⁻⁷	2.62 x 10 ⁻⁶	7.15 x 10 ⁻⁶	7.7 x 10 ⁻⁶
↑ Spec. Heat Cap., C _m (<i>J kg</i> ⁻¹ K	⁻¹) 746	713.9	777	625
Thermal Cond., K (<i>Wm</i> ⁻¹ <i>K</i> ⁻¹)	1.38	140	25-35	13

All data taken from "Electro- optics handbook", Eds. R. Waynant, M. Ediger, Pub. McGraw Hill apart form * "Optical materials" S. Musikant, Pub. Marcel Dekker Inc (1985) Properties specified at 300K

Figuring - Caltech LIGO

Polishing - Caltech LIGO

Suspension Attachments - GEO and Stanford

Photothermal Common-path Interferometer (PCI)

- ac-component of probe distortion is detected by photodiode + lock-in
- absorption coefficient of 10⁻⁷ cm⁻¹ can be detected with a 5 W pump
- crossed-beams help to avoid false signals from optics and surfaces of the sample

Absorption in pure YAG

Absorption at 1064 nm, scan from surface to surface

- 10x10x10mm³ cube
- uniform bulk absorption of 105 ppm/cm ± 10%
- normalized to Ti-sapphire reference with a correction for different dn/dT and thermal conductivity

Core Optics and Beamsplitter Fused Silica -Sapphire - Crystal Systems a-axis 1M\$/ year for 5 years c-axis 2/m\$/ year for 5 years YAG - Scientific Materials - ? GGG - Litton Airtron - 2 years - 2M\$? Silicon - Several growers - 10 inch optic -10K\$

Near Term Lasers and Optics Milestones

Set laser requirements after suspensions design summit

Set adaptive core optic control requirements after suspensions design summit

Select laser design at July 1999 LSC meeting

Set modulator requirements at July 1999 LSC meeting

Design a materials development program at the July LSC meeting

July 1999 LSC Meeting

Lasers, Ancillary Optics, Adaptive Optics - 1 day Agree on requirements Invite laser vendors

Materials Issues - 1 Day Make a plan for the materials development Invite crystal growth vendors

Conclusion

Lasers - ANU, Lightwave, LIGO and Stanford			
Requirements			
Potential Designs			
Auxiliary Optics - LIGO/Florida			
Phase modulators	Optical isolators		
Telescopes	Mode Cleaner		
Thermal Model - Beausoleil, Florida, GEO, LIGO and Stanford			
Adaptive Optics - LIGO/MIT, Stanford			
Milestones and Schedule			
Materials for Core Optics and Beam Splitters			
Growth	Figuring & Polishing		
Evaluation	Fabrication		