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e Studies of non Gaussian tails and their effects on the non
linearities of seismic isolation systems. The future aim is to
estimate the relevance of noise bursts in the seismic noise
measurements.

e Useful techniques to study non-linear regime systems bor-
rowed from field theory physics.

e Random walk simulations of Brownian motion models whose
low frequency spectral behaviour show tails similar to those
observed in mirror internal thermal noise spectra.



- Statistics in the time domain
to characterize the peaks of noise

affecting the Seismic Attenuation System

Motivation

The variations of the length dividing two mirros is mea-
sured through a laser interferometric technique. Every
motion of the masses is a limit to the observation of
astrophysical signals. In order to cut down the noise
active and passive systems are designed. :

Methods

e Acquisition system (accelerometers and spectral
analyser).

e C code using mathematical and Numerical Recipes
~ libraries.

Aims

e study of the distribution of noise measurements
around the average value.

e application of frequency filters.

e characterization of the time intervals between peaks
and their durations.
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Work in progress ...

e Estimation of higher order moments (skew-
ness, ...) to verify gaussianity.
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e Subdivision of the data array in smaller chunks
with a view to tell some trends (drift of the
mean value as a function of time,...).
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e Point out possible periodicities (convolution with
sinusoidal functions).
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Non-linear Effects in Stationary
Stochastic Systems Dynamics

Motivation

Investigation of the relevance of small non-linear
‘effects and their impact on the sensitivity curve of
interferometric gravitational wave detectors.

Methods

e Perturbative techniques using Feynman diagrams
and renormalization rules

e Numerical simulations (“Simulation of Super-
symmetric Models with a ...” Phys. Rev. D
Vol. 58 (1998) ID 065009).

Results

e Application of the sum rules borrowed from
field theory physics in order to define renor-
malized coefficients.

e Negligible variations if the fluctuations are only
due the thermal noise.

e Legitimate issues about the seismic noise spec-
tra al least for the VIRGO SuperAttenuator
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ical representation of perturbative calculus
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Comparison with the Boitzmann distribution

+oo
S(f) = / e 2" < z(Dz(t + 1) > dr

—00
and from this definition
KBT

< z2(t) >=( )(1—————+6a)

which is equivalent to

5 _ KBT “( +a “*) ’2dx
<zt> = ( +°° R
f e~ (GH5o)dy!
K T
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Moments of order greater than two are no longer equal
to zero and we find that

K BT 3K BT
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Errors on the estimate
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Stochastic Quantization
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Sum Rules and Renormalization Approach

The elastic constant becomes

3KpgTe 3a L3«
0 ) mwi+...

(1)

like a recursive definition.

It corresponds to the recursive expansion in tadpole
type bubbles of a tadpole.

Let us call renormalized the tadpole with all tadpole
corrections included and then use this definition to
write the corrections to the bare tadpole. We treat this
implicit definition using the field theory tools applied
to the geometric sums of Feynman diagrams.

With the same language of field theory we may define
a renormalized €.

The final result is

2 2
Q3 =%{1+\/1+%§] =221+ /1 F 6q]
' (mwo) 2

In order to understand such a modification we may note
that there are stronger forces pulling the system back
to the equilibrium configuration and the result is that
the measured recall constant mw2 has a new greater
value.

(“Perturbative and Numerical Methods for . ." accept-
ed by Physica A-Elsevier)



12

This is an important physical result: we may use the
transfer functions written in the linear hypothesis.

We recall that the active control of gravitional wave
detectors are completely based on the transfer func-
tions. We have only to insert the real parameters and
not the bare ones.

We expect that the resonant frequency should be greater
if @ goes up. It means that the system explores the
non-linear zone of the phase space. WwWhen T rises the
greater amplitude of fluctuations just produce such an
effect. If the recall constant increases it is obvious that
the opposite tendency is obtained.
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Numerical Simulation
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Spectral functions for different «
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Simple models whose PSD shows a
typical low frequency tail

Motivation

e The overall goal is to investigate how the
cooling of many of the normal modes in a
mirror influences the thermal spectrum al
low frequency.

e The problem is interesting by itself because
a lot of systems seem to show the typical
tail -} at low frequency.

Tools
o Critical Phenomena Theory
e Simulation of simple models with a thresh-
old characterization
" Results

e For the double hole potential a low fre-
quency tail is displayed by simulations.

e A damping force of viscous type doesn’t
reduce the PSD off the resonance range.
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