

LIGO I and the vision for LIGO II

Barry Barish NSF Panel Oct 25, 1999

LIGO-G990376-00-M

astrophysical sources

Sensitivity of LIGO to coalescing binaries

approach

• LIGO I

- » detector parameters chosen as a <u>balance</u> between <u>demonstrated</u> technologies and sensitivity sufficient for plausible detection
- » designed in the flexibility for upgrading subsystems for LIGO II
- » advanced R & D program toward LIGO II begun in 1997
- Rate for the detection of gravitational waves from burst sources
 - » Strain: $h \alpha 1/d$ [d = source distance]
 - » Rate: $R \alpha d^3$
 - » $R_{LIGOII} / R_{LIGOI} > 1000$

• LIGO II

» the timing and the concept are driven by the large increased physics reach

LIGO NSB Report

Barry Barish November 17, 1994

NSB 11/17/94

LIGO-G9900XX-00-M

LIGO Sites

6

Two detectors separated by 3000 km

- » coincident within difference in time of arrival for gravitational waves moving at speed of light
- » coincident time window $D t \sim 30$ msec required
- Note that from the recently published 40m analysis:
 - » "Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy"
 - Phys.Rev.Lett. 83 (1999) 1498
 - » candidate rate ~ 50 / hour
 - (> 4 sigma bursts)
 - » limit after template analysis < 0.3 / hour</p>

LIGO Plans

main activity

1996	Construction Underway -mostly civil
1997	Facility Construction
	-vacuum system
1998	Interferometer Construction
	-complete facilities
1999	Construction Complete
	-interferometers in vacuum
2000	Commission Detectors
	-first light; testing
2001	Engineering Tests
	-sensitivity; engineering run

LIGO Facilities

The Sites
Civil Construction
Beam Tubes
Vacuum Systems

LIGO-G9900XX-00-M

Civil Construction

□ Characteristics

⇒ Structures, Foundation, Roads, etc

- Large and Clean Laboratory Bldgs
- Beam Enclosures
- · Office/Lab Space

⇒ Requirements

- · Seismic Stability, Noise Sources, etc
- Cleanliness

NSB 11/17/94

8

Civil Construction

□ Characteristics

⇒ Structures, Foundation, Roads, etc

- Large and Clean Laboratory Bldgs
- Beam Enclosures
- · Office/Lab Space

⇒ Requirements

- · Seismic Stability, Noise Sources, etc
- Cleanliness

NSB 11/17/94

LIGO sites

HanfordObseratory

Livingston
 Observatory

LIGO-G9900XX-00-M

office & corner station

• Hanford

LIGO-G9900XX-00-M

Beam Tube

Beam Tube

- Livingston beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

LIGO-G9900XX-00-M

Beam Tube Bakeout

LIGO-G9900XX-00-M

Bakeout

results

а **Beam Tube Bakeout Results** NOTE: All results except for H

	NC	TE: All resu	ılts except f	or H 2	are upper li	mits	
		Hanford Livingston					
Species	Goal ^b	HY2	HY1	HX1	HX2	LX2	
H ₂	4.7	4.8	6.3	5.2	4.6	4.3	x 10 -14 torr liters/sec/cm
CH₄	48000	< 900	< 220	< 8.8	< 95	< 40	x 10 -20 torr liters/sec/cm
H₂O	1500	< 4	< 20	< 1.8	< 0.8	< 10	x 10 ⁻¹⁸ torr liters/sec/cm
со	650	< 14	< 9	< 5.7	< 2	< 5	x 10 ⁻¹⁸ torr liters/sec/cm
CO 2	2200	< 40	< 18	< 2.9	< 8.5	< 8	x 10 -19 torr liters/sec/cm
NO+C ₂ H ₆	7000	< 2	< 14	< 6.6	< 1.0	< 1.1	x 10 ⁻¹⁹ torr liters/sec/cm
H _n C _p O _q	50-2 °	< 15	< 8.5	< 5.3	< 0.4	< 4.3	x 10 ⁻¹⁹ torr liters/sec/cm
air leak	1000	< 20	< 10	< 3.5	< 16	< 7	x 10 -11 torr liter/sec

^a Outgassing results correct to 23 C

 $^{\rm b}$ Goal: maximum outgassing to achieve pressure equivalent to 10 $^{-9}\,$ torr H $_2\,$ using

only pumps at stations

^o Goal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100-300 AMU

Vacuum Equipment

NSB 11/17/94

7

Vacuum Chambers

Large Vacuum
 Chambers (BSC)

LIGO-G9900XX-00-M

Livingston Corner Station

Seismic Isolation

Optics

All optics polished & coated

- Microroughness within spec. (<10 ppm scatter)
- » ROC within spec. ($\delta R/R$ < 5%, except for BS)
- Coating defects within spec. (pt. defects < 2 ppm, 10 optics tested)
- Coating absorption
 within spec. (<1 ppm,
 40 optics tested)

• LHO 2km interferometer:

- » All optics at site, complete
- LLO:
 - » Characterization in progress at Caltech
 - Recycling mirror delivered for installation

LIGO metrology

Caltech

CSIRO

LIGO-G9900XX-00-M

LIGO Laser

Laser Prestabilization

Status and Plans

- The LIGO facilities are essentially complete (fall 1999), as stated to the NSB in 1994. This has motivated us to host a dedication ceremony in Livingston (Nov 11-12).
- The 'performance' of the facilities meets the LIGO requirements and will support LIGO II and beyond.
- The detector subsystem construction is far along and meets our performance requirements.
- The detector commissioning is underway. The planning milestones will allow sufficient validation from LIGO I before the LIGO II project funds are awarded.

Project Structure

⇒ Pre-Construct R&D (1991)	\$ 4.6M
⇒ Construct (incl R&D)	\$292.1M
\Rightarrow Operations (thru 2001)	\$68.7M

18

facilities milestones

		Projection/		Projection/	
Milestone Description	PMP	Actual	PMP	Actual	
	Ha	Hanford		Livingston	
Initiate Site Development	Mar-94	Mar-94	Aug-95	Jun-95	
Beam Tube Final Design Review	Apr-94	Apr-94	Apr-94	Apr-94	
Select A&E Contractor	Nov-94	Nov-94	Nov-94	Nov-94	
Complete Beam Tube Qualification Test	Feb-95	Apr-95	Feb-95	Apr-95	
Select Vacuum Equipment Contractor	Mar-95	Jul-95	Mar-95	Jul-95	
Complete Performance Measurement Baseline	Apr-95	Apr-95	Apr-95	Apr-95	
Initiate Beam Tube Fabrication	Oct-95	Dec-95	Oct-95	Dec-95	
Initiate Slab Construction	Oct-95	Feb-96	Jan-97	Jan-97	
Initiate Building Construction	Jun-96	Jul-96	Jan-97	Jan-97	
Joint Occupancy	Sep-97	Oct-97	Mar-98	Feb-98	
Accept Tubes and Covers	Mar-98	Mar-98	Mar-99	Oct-98	
Beneficial Occupancy	Mar-98	Mar-98	Sep-98	Dec-98	
Accept Vacuum Equipment	Mar-98	Nov-98	Sep-98	Jan-99	
Initiate Facility Shakedown	Mar-98	Nov-98	Mar-99	Jan-99	

detector milestones

Milestone Description	PMP	Projection/ Actual
Beam Splitter Chamber Stack Final Design Review	Apr-98	Aug-98
Core Optics Support Final Design Review	Feb-98	Nov-98
Horizontal Access Module Final Design Review	Apr-98	Jun-98
Core Optics Components Final Design Review	Dec-97	May-98
Input/Output Optics Final Design Review	Apr-98	Mar-98
Pre-Stabilized Laser Final Design Review	Aug-98	Mar-99
Alignment Sensing Final Design Review	Apr-98	Jul-98
Length Sensing Final Design Review	May-98	Jul-98
Washington Controls Area Net Ready to Install	Apr-98	Mar-98
Control and Data System (CDS) Data Acquisition Fi	Apr-98	May-98
Physics Environment Monitoring Final Design Review	Jun-98	Oct-97
Detector System Preliminary Design Review	Dec-97	Oct-98
Begin Washington Interferometer Installation	Jul-98	Jul-98
Begin Louisiana Interferometer Installation	Jan-99	Jan-99
Begin Coincidence Tests	Dec-00	Dec-00

costs & commitments

LIGO-G9900XX-00-M

LIGO Contingency vs percent complete

Staffing

labor distribution projections

NSF LIGO II Review

36

The Path to LIGO II

NSF LIGO II Review

38

LIGO II

- LIGO Scientific Collaboration (LSC)
- Advanced R & D toward LIGO II
 - » funded in LIGO Lab and LSC groups since 1998 at level of ~\$6M/yr

• LSC White Paper (concept for LIGO II)

- » the physics reach (K. Thorne)
- » the technical reach (R. Weiss)
- reference design (Strain, Gustafson and Shoemaker)
- Conceptual Project Book (Sanders)
 - cost & management
 - schedule, manpower and impact on LIGO I
 - installation and commissioning
- Other aspects of LIGO II (closed session)
 - » international collaboration (GEO, ACIGA)
 - » electronics and computing (Lazzarini)

LIGO Scientific Collaboration

Institution	Heads	FTE	LIGO I - Heads	LIGO I - FTE
ACIGA -Australia	23	14.9	0	0
Caltech - CACR	3	0.7	3	0.7
Caltech - CaRT	8	3.4	8	3.4
Caltech - CEGG	2	1.6	1	0
Cornell	2	1.8	2	1.8
Univ of Florida	12	9.2	12	9.2
GEO	34	19.2	2	0.3
NAOJ - TAMA	3	1.1	0	0
JILA	6	3.1	0	0
LSU	5	3.4	0	0
Lousiana Tech	6	1.2	6	1.2
Univ of Michigan	2	1.5	2	1.5
Moscow State University	11	10	0	0
Oregon University	7	4.4	7	4.4
Institute of Applied Physics - Russia	12	9.5	0	0
Stanford University	21	14.3	0	0
Syracuse	5	5	1	1
Univ of Texas - Brownsville	2	0.5	2	0.5
Univ of Wisconsin - Milwaukee	7	4.5	7	4.5
Total: non LIGO Laboratory	171	109.3	53	28.5
LIGO Hanford	12	12	12	12
	7	7	7	7
	. 17	. 17	17	
LIGO Caltech	52	51	52	51
Total : LIGO Laboratory	88	87	88	87
T / 11 00		100.5		
Iotal LSC	259	196.3	133	115.5

the noise floor

LIGO II reference design

Features

- » increased laser power
- » improved suspension
- » improved seismic isolation
- » new test mass material
- » new optical configuration

LIGO Science

physics schedule

• Run I (LIGO I ~2002-2005)

- » begins after $h \sim 10^{-21}$ attained
- » two year run allows first neutron binary search (live time ~ 1 yr)
- » plus one extra year for special running or coincidences with Virgo etc.
- » LIGO I Collaboration

• Run II (LIGO II ~2007-2009)

- » design sensitivity $h \sim 10^{-22}$
- » rate > 1000 x LIGO I ⇒ 1 day to exceed Run 1
- » broad LSC participation in implementation

Advanced Detectors (> 2010)

- » sensitivity h ~ 10⁻²³ ?
- » not limited by noise floor from facilities
- new optical configurations, new vacuum chambers, floor space, etc